Skip to main content

Advertisement

Log in

Model-based design and test of vibration energy harvester for aircraft application

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper deals with a development process of a vibration energy harvesting device in aircraft applications. The vibration energy harvester uses ambient energy of mechanical vibration and it provides an autonomous source of energy for wireless sensors or autonomous applications. This application presents a complex engineering problem and the vibration energy harvester consists of precise mechanical part, electro-mechanical converter, electronics and a powered application. It can be perceive as a mechatronic system and a mechatronic approach was used for development of our vibration energy harvester. An essential step of development process is simulation modeling which is based on mechatronic approach. Presented model-based design of vibration energy harvester is very useful during development process and the whole development process of the autonomous energy source is presented in this paper. The main aim of the paper is an introduction of our development methodology and our approach is presented on a sample of the vibration energy harvester for aircraft applications under project ESPOSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Ancik Z, Vlach R, Janak L, Kopecek P, Hadas Z (2013) Modeling, simulation and experimental testing of the MEMS thermoelectric generators in wide range of operational conditions. In: Proceedings of SPIE Smart Sensors, Actuators, and MEMS VI 8763: 87631M 1–10. doi:10.1117/12.2017134

  • Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17(12):175–195

    Article  Google Scholar 

  • Benasciutti D, Moro L, Zelenika S, Brusa E (2010) Vibration energy scavenging via piezoelectric bimorphs of optimized shapes. Microsyst Technol 16(5):657–668. doi:10.1007/s00542-009-1000-5

    Article  Google Scholar 

  • Chen YJ, Pan CT, Liu ZH (2013) Analysis of an in-plane micro-generator with various microcoil shapes. Microsyst Technol 19(1):43–52. doi:10.1007/s00542-012-1635-5

    Article  Google Scholar 

  • Dow ABA, Schneider M, Koo D, Al-Rubaye HA, Bittner A, Schmid U, Kherani N (2012) Modeling the performance of a micromachined piezoelectric energy harvester. Microsyst Technol 18(7–8):1035–1043. doi:10.1007/s00542-012-1436-x

    Google Scholar 

  • Fiala P, Drexler P (2012) Power supply sources based on resonant energy harvesting. Microsyst Technol 18(7–8):1181–1192. doi:10.1007/s00542-012-1474-4

    Article  Google Scholar 

  • Grepl R, Lee B (2009) Model based controller design for automotive electronic throttle. Recent advances in mechatronics 2008–2009, Springer, Berlin, pp 209–214. doi:10.1007/978-3-642-05022-0_36

  • Hadas Z, Kurfurst J, Ondrusek C, Singule V (2012a) Artificial intelligence based optimization for vibration energy harvesting applications. Microsyst Technol 18(7–8):1003–1014. doi:10.1007/s00542-012-1432-1

    Article  Google Scholar 

  • Hadas Z, Ondrusek C, Kurfurst J (2009) Optimization of vibration power generator parameters using self-organizing migrating algorithm. Recent advances in mechatronics 2008–2009, Springer, Berlin, pp 245–250. doi:10.1007/978-3-642-05022-0_42

  • Hadas Z, Ondrusek C, Kurfurst J, Singule V (2011) Vibration energy harvester optimization using artificial intelligence. In: Proceedings of SPIE—The International Society for Optical Engineering 8066:8066111. doi:10.1117/12.886383

  • Hadas Z, Ondrusek C, Singule V (2009) Increasing sensitivity of vibration energy harvester. In: Proceedings of SPIE Europe Microtechnologies for the New Millennium 7362(1):516–522. doi:10.1117/12.820919

  • Hadas Z, Ondrusek C, Singule V (2010a) Power sensitivity of vibration energy harvester. Microsyst Technol 16(5):691–702. doi:10.1007/s00542-010-1046-4

    Article  Google Scholar 

  • Hadas Z, Singule V (2010) New subject “Energy Harvesting” for education of mechatronics. In: Proceedings of 13th International Symposium on Mechatronics MECHATRONIKA 2010, 5521192:16–17

  • Hadas Z, Singule V (2011) Energy harvesting—opportunity for future remote applications. In: Proceedings of 17th International Conference on Engineering Mechanics, Svratka, Czech Republic, 167–170

  • Hadas Z, Singule V, Ondrusek C (2009c) Optimal design of vibration power generator for low frequency. Solid State Phenom 147–149:426–431. doi:10.4028/www.scientific.net/SSP.147-149.426

    Article  Google Scholar 

  • Hadas Z, Singule V, Ondrusek C (2010b) Verification of vibration power generator model for prediction of harvested power. Solid State Phenom 164:291–296. doi:10.4028/www.scientific.net/SSP.164.291

    Article  Google Scholar 

  • Hadas Z, Singule V, Ondrusek C, Kluge M (2007) Simulation of vibration power generator. Recent Adv Mechatron. doi:10.1007/978-3-540-73956-2_69

    MATH  Google Scholar 

  • Hadas Z, Singule V, Vechet S, Ondrusek C (2010c) Development of energy harvesting sources for remote applications as mechatronic systems. In: 14th International Power Electronics and Motion Control Conference (EPE/PEMC 2010), 13–19. doi:10.1109/EPEPEMC.2010.5606867

  • Hadas Z, Vetiska V, Ancik Z, Ondrusek C, Singule V (2013) Development of energy harvester system for avionics. In: Proceedings of SPIE Smart Sensors, Actuators, and MEMS VI 8763:87631F 1–8. doi:10.1117/12.2017126

  • Hadas Z, Vetiska V, Singule V, Andrs O, Kovar J, Vetiska J (2012b) Energy harvesting from mechanical shocks using a sensitive vibration energy harvester. Int J Adv Rob Syst 9(225):1–7. doi:10.5772/53948

    Article  Google Scholar 

  • Hadas Z, Zouhar J, Singule V, Ondrusek C (2008) Design of energy harvesting generator base on rapid prototyping parts. In: IEEE 13th Power Electronics and Motion Control Conference Poznan, 1665–1669. doi:10.1109/EPEPEMC.2008.4635506

  • Julin Blystad L-C, Halvorsen E (2011) A piezoelectric energy harvester with a mechanical end stop on one side. Microsyst Technol 17(4):505–511. doi:10.1007/s00542-010-1163-0

    Article  Google Scholar 

  • Md Ralib AA, Nordin AN, Salleh H, Othman R (2012) Fabrication of aluminium doped zinc oxide piezoelectric thin film on a silicon substrate for piezoelectric MEMS energy harvesters. Microsyst Technol 18(11):1761–1769. doi:10.1007/s00542-012-1550-9

    Article  Google Scholar 

  • Paradiso JA, Starner T (2005) Energy scavenging for mobile and wireless electronic. IEEE Pervasive Comput 4(1):18–27

    Article  Google Scholar 

  • Salim MD, Salleh H, Salim DSM (2012) Simulation and experimental investigation of a wide band PZ MEMS harvester at low frequencies. Microsyst Technol 18(6):753–763. doi:10.1007/s00542-012-1453-9

    Article  Google Scholar 

  • Serre C et al (2008) Design and implementation of mechanical resonators for optimized inertial electromagnetic microgenerators. Microsyst Technol 14(4–5):653–658. doi:10.1007/s00542-007-0494-y

    Article  Google Scholar 

Download references

Acknowledgments

This work has been funded by the European Commission within the FP7 project “Efficient Systems and Propulsion for Small Aircraft | ESPOSA”, Grant Agreement No. ACP1-GA-2011-284859-ESPOSA. And additional support by European Regional Development Fund in the framework of the research project NETME Centre under the Operational Programme Research and Development for Innovation. Reg. Nr. CZ.1.05/2.1.00/01.0002, id code: ED0002/01/01, project name: NETME Centre—New Technologies for Mechanical Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdenek Hadas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadas, Z., Vetiska, V., Huzlik, R. et al. Model-based design and test of vibration energy harvester for aircraft application. Microsyst Technol 20, 831–843 (2014). https://doi.org/10.1007/s00542-013-2062-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-013-2062-y

Keywords

Navigation