Skip to main content

Advertisement

Log in

Analytical modeling, simulation and experimental study for nonlinear hybrid piezoelectric–electromagnetic energy harvesting from stochastic excitation

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

For the designed nonlinear hybrid piezoelectric (PE)–electromagnetic (EM) energy harvester, electromechanical coupling state equations are established at stochastic excitation, and vibration response, output mean power, voltage and current are derived by statistical linearization method. Then, effects of nonlinear strength, load resistance and excitation spectral density on vibration response and electric output of nonlinear hybrid energy harvester are studied by theoretical analysis, simulation and experimental test. It is obtained that mean power of nonlinear hybrid energy harvester increases linearly with acceleration spectral density; the bigger nonlinear strength, the bigger output power of energy harvester and the lower resonant frequency are; besides, mean amplitude of nonlinear hybrid energy harvester reaches the minimum at PE optimal load, but it increases with EM load increasing. Compared with linear hybrid energy harvester, the resonant frequency of nonlinear energy harvester can be decreased by 57%, while output power can be increased by 72%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Al-Ashtari W, Hunstig M, Hemsel T (2012) Frequency tuning of piezoelectric energy harvesters by magnetic force. Smart Mater Struct 21:035019

    Article  Google Scholar 

  • Blystad LCJ, Halvorsen E, Husa S (2010) Piezoelectric MEMS energy harvesting systems driven by harmonic and random vibrations. IEEE Trans Ultrason Ferroelectr Freq Control 57(4):908–919

    Article  Google Scholar 

  • Cammarano A, Neild SA, Burrow SG (2014) Optimum resistive loads for vibration-based electromagnetic energy harvesters with a stiffening nonlinearity. J Intell Mater Syst Struct 25(14):1757–1770

    Article  Google Scholar 

  • Challa VR, Prasad MG, Shi Y (2008) A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Mater Struct 17:015035

    Article  Google Scholar 

  • Cottone F, Gammaitoni L, Vocca H et al (2012) Piezoelectric buckled beams for random vibration energy harvesting. Smart Mater Struct 21:035021

    Article  Google Scholar 

  • Daqaq MF (2011) Transduction of a bistable inductive generator driven by white and exponentially correlated Gaussian noise. J Sound Vib 330(11):2554–2564

    Article  Google Scholar 

  • Daqaq MF (2012) On intentional introduction of stiffness nonlinearities for energy harvesting under white Gaussian excitations. Nonlinear Dyn 69:1063–1079

    Article  Google Scholar 

  • Erturk A, Inman DJ (2011) Piezoelecric energy harvesting. Wiley, Chichester

    Book  Google Scholar 

  • Ferrari M, Ferrari V, Guizzetti M (2010) Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters. Sens Actuat A 162:425–431

    Article  Google Scholar 

  • Foisal ARM, Hong C, Chung GS (2012) Multi-frequency electromagnetic energy harvester using a magnetic spring cantilever. Sens Actuat A 182:106–113

    Article  Google Scholar 

  • Gradshtenyn IS, Ryzhik IM (1994) Table of integrals series, and products. Academic, New York, pp 130–132

    Google Scholar 

  • Green PL, Worden K, Atallah K (2012) The benefits of Duffing-type nonlinearities and electrical optimisation of a mono-stable energy harvester under white Gaussian excitations. J Sound Vib 331(20):4504–4517

    Article  Google Scholar 

  • Green PL, Papatheou E, Sims ND (2013) Energy harvesting from human motion and bridge vibrations: an evaluation of current nonlinear energy harvesting solutions. J Intell Mater Syst Struct 24(12):1494–1505

    Article  Google Scholar 

  • Halvorsen E (2008) Energy harvesters driven by broadband random vibrations. J Microelectromech Syst 17(5):1061–1071

    Article  Google Scholar 

  • Jackson WC, Brian KH, Emiliano SR (2013) Experimental analysis of a piezoelectric energy harvesting system for harmonic, random, and sine on random vibration. Adv Acoust Vib. doi:10.1155/2013/241025

    Google Scholar 

  • Jiang WA, Chen LQ (2013) Energy harvesting of monostable Duffing oscillator under Gaussian white noise excitation. Mech Res Commun 53:85–91

    Article  Google Scholar 

  • Jiang WA, Chen LQ (2014) An equivalent linearization technique for nonlinear piezoelectric energy harvesters under Gaussian white noise. Commun Nonlinear Sci Numer Simul 19:2897–2904

    Article  Google Scholar 

  • Karami MA, Inman DJ (2011) Electromechanical modeling of the low-frequency zigzag micro-energy harvester. J Intell Mater Syst Struct 22:271–282

    Article  Google Scholar 

  • Kumar P, Narayanan S, Adhikari S et al (2014) Fokker–Planck Eq. analysis of randomly excited nonlinear energy harvester. J Sound Vib 333(7):2040–2053

    Article  Google Scholar 

  • Li P, Gao S, Niu S et al (2014) An analysis of the coupling effect for a hybrid piezoelectric and electromagnetic energy harvester. Smart Mater Struct 23(6):065016

    Article  Google Scholar 

  • Li P, Gao S, Cai H (2015) Modeling and analysis of hybrid piezoelectric and electromagnetic energy harvesting from random vibrations[J]. Microsyst Technol 21(2):401–414

    Article  Google Scholar 

  • Li P, Gao S, Cai H (2016) Theoretical analysis and experimental study for nonlinear hybrid piezoelectric and electromagnetic energy harvester. Microsyst Technol 22:727–739

    Article  Google Scholar 

  • Liu CH (2008) Stochastic process, 4th edn. Huazhong University of Science and Technology Press, Wuhan

    Google Scholar 

  • Liu H, Lee C, Kobayashi T (2012) A new S-shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30 Hz. Microsyst Technol 18:497–506

    Article  Google Scholar 

  • Mann BP, Owens BA (2010) Investigations of a nonlinear energy harvester with a bistable potential well. J Sound Vib 329:1215–1226

    Article  Google Scholar 

  • Maryam GT, Stephen JE (2014) Extending the dynamic range of an energy harvester using nonlinear damping. J Sound Vib 3:623–629

    Google Scholar 

  • Marzencki M, Defosseux M, Basrour S (2009) MEMS vibration energy harvesting devices with passive resonance frequency adaptation capability. J Microelectromech Syst 18:1444–1453

    Article  Google Scholar 

  • Meimukhin D, Cohen N, Bucher I (2013) On the advantage of a bistable energy harvesting oscillator under band-limited stochastic excitation. J Intell Mater Syst Struct 24(14):1736–1746

    Article  Google Scholar 

  • Owens BAM, Mann BP (2012) Linear and nonlinear electromagnetic coupling models in vibration-based energy harvesting. J Sound Vib 331:922–937

    Article  Google Scholar 

  • Pellegrini SP, Tolou N, Schenk M (2013) Bistable vibration energy harvesters: a review. J Intell Mater Syst Struct 24:1303–1312

    Article  Google Scholar 

  • Sebald G, Kuwano H, Guyomar D (2011) Experimental Duffing oscillator for broadband piezoelectric energy harvesting. Smart Mater Struct 20:102001

    Article  Google Scholar 

  • Serre C, Rodríguez AP, Fondevilla N (2007) Vibrational energy scavenging with Si technology electromagnetic inertial microgenerators. Microsyst Technol 13:1655–1661

    Article  Google Scholar 

  • Shan X, Guan S, Liu Z (2013) A new energy harvester using a piezoelectric and suspension electromagnetic mechanism. Journal of Zhejiang University Science A 14:890–897

    Article  Google Scholar 

  • Spreemann D, Manoli Y (2012) Electromagnetic vibration energy harvesting devices. Springer, Germany

    Book  Google Scholar 

  • Tiwari R, Buch N, Garcia E (2014) Energy balance for peak detection method in piezoelectric energy harvester. J Intell Mater Syst Struct 25:1024–1035

    Article  Google Scholar 

  • Tongji University, Department of Mathematics (2007) Higher mathematics. High Education Press, China

    Google Scholar 

  • Torsten R, Armaghan S (2010) Analysis and modelling towards hybrid piezo-electromagnetic vibrating energy harvesting devices. AIP Conf Proc 81:81–85

    Google Scholar 

  • Wu X, Khaligh A, Xu Y (2008) Modeling, design and optimization of hybrid electromagnetic and piezoelectric MEMS energy scavengers. In: IEEE 2008 custom intergrated circuits conference, pp 177–181

  • Yang X, Wang Y, Cao Y (2014) A new hybrid piezoelectric–electromagnetic vibration-powered generator and its model and experiment research. IEEE Trans Appl Superconduct 24:1–4

    Article  Google Scholar 

  • Zhuang BZ, Chen NL (1986) Theory and application of nonlinear random vibration. Zhe Jiang University Press, China

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Gao, S., Zhou, X. et al. Analytical modeling, simulation and experimental study for nonlinear hybrid piezoelectric–electromagnetic energy harvesting from stochastic excitation. Microsyst Technol 23, 5281–5292 (2017). https://doi.org/10.1007/s00542-017-3329-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3329-5

Keywords

Navigation