Skip to main content
Log in

Polymerase chain reaction compatibility of adhesive transfer tape based microfluidic platforms

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Laser patterned adhesive transfer tapes are a rapid, versatile, and low cost option to fabricate microfluidic platforms. In this work, we examined the compatibility with polymerase chain reaction (PCR) of different types of adhesive tape materials patterned with a CO2 laser cutter. Acrylic, polyimide, and silicone-based tapes were considered. We performed a systematic study on off-the-shelf adhesive tapes with respect to fluid handling, PCR inhibition, reagent loss, and on-chip PCR reaction. A novel microfluidic PCR approach was implemented that combines the advantages of previously reported systems. It uses a thermal gradient from a single heating element and the thermocycling was carried out by passing the reaction mixture back and forth in a microfluidic channel strategically placed along the thermal gradient. Only the silicone-based tapes were compatible with on-chip PCR. The overall fabrication process takes less than 30 min, uses only off-the-shelf finished or semi-finished materials, and is amenable to large-scale reel-to-reel processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Becker H (2010) Mind the gap! Lab Chip 10(3):271–273

    Article  Google Scholar 

  • Blow N (2009) Microfluidics: the great divide. Nat Meth 6(9):683–686

    Article  Google Scholar 

  • Crews N, Wittwer C, Gale B (2008) Continuous-flow thermal gradient PCR. Biomed Microdevices 10(2):187–195. doi:10.1007/s10544-007-9124-9

    Article  Google Scholar 

  • Focke M, Kosse D, Muller C, Reinecke H, Zengerle R, von Stetten F (2010) Lab-on-a-foil: microfluidics on thin and flexible films. Lab Chip 10(11):1365–1386

    Article  Google Scholar 

  • Khan Malek C, Robert L, Salut R (2009) Femtosecond laser machining and lamination for large-area flexible organic microfluidic chips. Eur Phys J Appl Phys 46(01):null–null. doi:10.1051/epjap/2009027

  • Kim J, Xu X (2003) Excimer laser fabrication of polymer microfluidic devices. J Laser Appl 15(4):255

    Article  Google Scholar 

  • Kim TN, Campbell K, Groisman A, Kleinfeld D, Schaffer CB (2005) Femtosecond laser-drilled capillary integrated into a microfluidic device. Appl Phys Lett 86(20):201106

    Article  Google Scholar 

  • Li H, Fan Y, Kodzius R, Foulds I (2012) Fabrication of polystyrene microfluidic devices using a pulsed CO2 laser system. Microsyst Technol 18(3):373–379. doi:10.1007/s00542-011-1410-z

    Article  Google Scholar 

  • Lutz S, Weber P, Focke M, Faltin B, Hoffmann J, Muller C, Mark D, Roth G, Munday P, Armes N, Piepenburg O, Zengerle R, von Stetten F (2010) Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA). Lab Chip 10(7):887–893

    Article  Google Scholar 

  • Mukhopadhyay R (2007) When PDMS isn’t the best. Anal Chem 79(9):3248–3253. doi:10.1021/ac071903e

    Article  Google Scholar 

  • Nath P, Fung D, Kunde YA, Zeytun A, Branch B, Goddard G (2010) Rapid prototyping of robust and versatile microfluidic components using adhesive transfer tapes. Lab Chip 10(17):2286–2291

    Article  Google Scholar 

  • Pješčić I, Tranter C, Hindmarsh P, Crews N (2010) Glass-composite prototyping for flow PCR with in situ DNA analysis. Biomed Microdevices 12(2):333–343. doi:10.1007/s10544-009-9389-2

    Article  Google Scholar 

  • Schaff UY, Sommer GJ (2011) Whole blood immunoassay based on centrifugal bead sedimentation. Clin Chem 57(5):753–761. doi:10.1373/clinchem.2011.162206

    Article  Google Scholar 

  • Shen K, Chen X, Guo M, Cheng J (2005) A microchip-based PCR device using flexible printed circuit technology. Sens Actuators B Chem 105(2):251–258. doi:10.1016/j.snb.2004.05.069

    Article  Google Scholar 

  • Siegrist J, Gorkin R, Bastien M, Stewart G, Peytavi R, Kido H, Bergeron M, Madou M (2010) Validation of a centrifugal microfluidic sample lysis and homogenization platform for nucleic acid extraction with clinical samples. Lab Chip 10(3):363–371

    Article  Google Scholar 

  • Trung NB, Saito M, Takabayashi H, Viet PH, Tamiya E, Takamura Y (2010) Multi-chamber PCR chip with simple liquid introduction utilizing the gas permeability of polydimethylsiloxane. Sens Actuators B Chem 149(1):284–290. doi:10.1016/j.snb.2010.06.013

    Article  Google Scholar 

  • Velten T, Schuck H, Richter M, Klink G, Bock K, Malek CK, Roth S, Schoo H, Bolt PJ (2008) Microfluidics on foil: state of the art and new developments. Proc Inst Mech Eng Part B J Eng Manuf 222(1):107–116. doi:10.1243/09544054jem866

    Article  Google Scholar 

  • Velten T, Schuck H, Haberer W, Bauerfeld F (2010) Investigations on reel-to-reel hot embossing. Int J Adv Manuf Technol 47(1):73–80. doi:10.1007/s00170-009-1975-1

    Article  Google Scholar 

  • Wang F, Burns M (2009) Performance of nanoliter-sized droplet-based microfluidic PCR. Biomed Microdevices 11(5):1071–1080. doi:10.1007/s10544-009-9324-6

    Article  Google Scholar 

  • Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3(1):335–373. doi:10.1146/annurev.bioeng.3.1.335

    Article  Google Scholar 

  • Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28(1):153–184. doi:10.1146/annurev.matsci.28.1.153

    Article  Google Scholar 

  • Zhang C, Xing D (2007) Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends. Nucleic Acids Res 35(13):4223–4237. doi:10.1093/nar/gkm389

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by a Department of Energy Laboratory Directed Research and Development Grant (20070010-DR) at Los Alamos National Laboratory. The authors thank Michelle Espy, Momchilo Vuyisich, Scott White, Andrew Badbury, Ahmet Zeytun, Alina Deshpande, and John Dunbar for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pulak Nath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nath, P., Maity, T.S., Pettersson, F. et al. Polymerase chain reaction compatibility of adhesive transfer tape based microfluidic platforms. Microsyst Technol 20, 1187–1193 (2014). https://doi.org/10.1007/s00542-013-1901-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-013-1901-1

Keywords

Navigation