Skip to main content
Log in

Design, fabrication and testing of a high performance silicon piezoresistive Z-axis accelerometer with proof mass-edge-aligned-flexures

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper presents design, fabrication and testing of a quad beam silicon piezoresistive Z-axis accelerometer with very low cross-axis sensitivity. The accelerometer device proposed in the present work consists of a thick proof mass supported by four thin beams (also called as flexures) that are connected to an outer supporting rim. Cross-axis sensitivity in piezoresistive accelerometers is an important issue particularly for high performance applications. In the present study, low cross-axis sensitivity is achieved by improving the device stability by placing the four flexures in line with the proof mass edges. Various modules of a finite element method based software called CoventorWare was used for design optimization. Based on the simulation results, a flexure thickness of 30 μm and a diffused resistor doping concentration of 5 × 1018 atoms/cm3 were fixed to achieve a high prime-axis sensitivity of 122 μV/Vg, low cross-axis sensitivity of 27 ppm and a relatively higher bandwidth of 2.89 kHz. The designed accelerometer was realized by a complementary metal oxide semiconductor compatible bulk micromachining process using a dual doped tetra methyl ammonium hydroxide etching solution. The fabricated accelerometer devices were tested up to 13 g static acceleration using a rate table. Test results of fabricated devices with 30 μm flexure thickness show an average prime axis sensitivity of 111 μV/Vg with very low cross-axis sensitivities of 0.652 and 0.688 μV/Vg along X-axis and Y-axis, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Allen HV, Terry SC, Bruin DWD (1989) Accelerometer systems with self-testable features. Sens Actuators A 20:153–161

    Article  Google Scholar 

  • Amarasinghe R, Dao DV, Toriyama T, Sugiyama S (2005) Design and fabrications of a miniaturized six-degree-of-freedom piezoresistive accelerometer. J Micromech Microeng 15:1745–1753

    Article  Google Scholar 

  • Burrer C, Esteve J, Plaza JA, Bao M, Ruiz O, Samitier J (1994) Fabrication and characterization of a twin-mass accelerometer. Sens Actuators A 43:115–119

    Article  Google Scholar 

  • Chen H, Bao M, Zhu H, Shen S (1997) A piezoresistive accelerometer with a novel vertical beam structure. Sens Actuators A 63:19–25

    Article  Google Scholar 

  • Dong P, Li X, Yang H, Bao H, Zhou W, Li S, Feng S (2008) High performance monolithic triaxial piezoresistive shock accelerometers. Sens Actuators A 141:339–346

    Article  Google Scholar 

  • Eklund J, Shkel AM (2007) Single-mask fabrication of high-g piezoresistive accelerometers with extended temperature range. J Micromech Microeng 17:730–736

    Article  Google Scholar 

  • Engesser M, Franke AR, Maute M, Meisel DC, Korvink JG (2009) Miniaturization limits of piezoresistive MEMS accelerometers. Microsystem Technologies J 15:1835–1844

    Article  Google Scholar 

  • Farahani H, Mills JK, Cleghorn WL (2009) Design, fabrication and analysis of micromachined high sensitivity and 0% cross-axis sensitivity capacitive accelerometers. Microsystem Technologies J 15:1815–1826

    Article  Google Scholar 

  • Hsien LC, Barzilai AM, Reynolds JK, Partridge A, Kenny TW, Grade JD, Rockstad HK (1998) Characterization of a high-sensitivity micromachined tunneling accelerometer with micro-g resolution. J Microelectromech Syst 7:235–244

    Article  Google Scholar 

  • Hsu CP, Yip MC, Fang W (2009) Implementation of gap-closing differential capacitive sensing z-axis accelerometer on SOI wafer. J Micromech Microeng 19:075006

    Article  Google Scholar 

  • Huang S, Li X, Song Z, Wang Y, Yang H, Che L, Jiao J (2005) A high-performance micromachined piezoresistive accelerometer with axially stressed tiny beams. J Micromech Microeng 17:730–736

    Google Scholar 

  • Kal S, Das S, Maurya DK, Biswas K, Ravi Sankar A, Lahiri SK (2006) CMOS compatible bulk micromachined silicon piezoresistive accelerometer with low off-axis sensitivity. Microelectron J 37:22–30

    Article  Google Scholar 

  • Kanda Y (1991) Piezoresistance effect of silicon. Sens Actuators A 28:83–91

    Article  Google Scholar 

  • Kim KH, Ko JS, Cho Young-Ho, Lee K, Kwak BM, Park K (1995) A skew-symmetric cantilever accelerometer for automotive airbag applications. Sens Actuators A 50:121–126

    Article  Google Scholar 

  • Kobayashi T, Okada H, Masuda T, Maeda R, Itoh T (2010) A digital output piezoelectric accelerometer using a Pb(Zr, Ti)O3 thin film array electrically connected in series. Smart Mater Struct 19:105030

    Article  Google Scholar 

  • Kwon K, Park S (1998) A bulk micromachined three-axis accelerometer using silicon direct bonding technology and polysilicon layer. Sens Actuators A 66:250–255

    Article  Google Scholar 

  • Madou MJ (2002) Fundamentals of microfabrication—the science of miniaturization. CRC Press, New York

  • Pak JJ, Kabir AE, Neudeck GW, Logsdon JH (1996) A bridge-type piezoresistive accelerometer using merged epitaxial lateral overgrowth for thin silicon beam formation. Sens Actuators A 56:267–271

    Article  Google Scholar 

  • Park WT, Partridge A, Candler RN, Vitikkate VA, Yama G, Lutz M, Kenny TW (2006) Encapsulated sub-millimeter piezoresistive accelerometers. J Microelectromech Syst 15:507–514

    Article  Google Scholar 

  • Patridge A, Reynolds JK, Benjamin WC, Chow EM, Fitzgerald AM, Zhang L, Maluf NI, Kenny TW (2000) A high-performance planar piezoresistive accelerometer. J Microelectromech Syst 9:58–66

    Article  Google Scholar 

  • Plaza JA, Chen H, Esteve J, Lora-tamayo E (1998) New bulk accelerometer for triaxial detection. Sens Actuators A 66:105–108

    Article  Google Scholar 

  • Ravi Sankar A, Das S, Lahiri SK (2009a) Cross-axis sensitivity reduction of a silicon MEMS piezoresistive accelerometer. Microsyst Technol 15:511–518

    Article  Google Scholar 

  • Ravi Sankar A, Lahiri SK, Das S (2009b) Performance enhancement of a silicon MEMS piezoresistive single axis accelerometer with electroplated gold on a proof mass. J Micromech Microeng 19:1–10

    Article  Google Scholar 

  • Ravi Sankar A, Swathi Sree Bindhu V, Das S (2011) Coupled effects of gold electroplating and electrochemical discharge machining processes on the performance improvement of a capacitive accelerometer. Microsyst Technol 17:1661–1670

    Article  Google Scholar 

  • Riethmuller W, Benecke W, Schnakenberg U, Wagner B (1992) A smart accelerometer with on-chip electronics fabricated by a commercial CMOS process. Sens Actuators A 50:121–126

    Google Scholar 

  • Roylance LM, Angell JB (1979) A batch fabricated silicon accelerometer. IEEE Trans Electron Dev 26:1911–1917

    Article  Google Scholar 

  • Sim J, Cho C, Kim J, Lee J, Lee J (1998) Eight-beam piezoresistive accelerometer fabricated by using a selective porous-silicon etching method. Sens Actuators A 66:273–278

    Article  Google Scholar 

  • Spangler LC, Kemp CJ (1996) ISAAC: integrated silicon automotive accelerometer. Sens Actuators A 54:523–529

    Article  Google Scholar 

  • Takao H, Matsumoto Y, Ishida M (1998) Stress-sensitive differential amplifiers using piezoresistive effects of MOSFETs and their application to three-axial accelerometers. Sens Actuators A 65:61–68

    Article  Google Scholar 

  • Takao H, Fukumoto H, Ishida M (2001) A CMOS integrated three-axis accelerometer fabricated with commercial submicrometer CMOS technology and bulk-micromachinig. IEEE Trans Electron Devices 48:1961–1968

    Article  Google Scholar 

  • Tschan T, Rooij ND, Bezinge A, Ansermet S, Berthoud J (1991) Characterization and modelling of silicon piezoresistive accelerometers fabricated by a bipolar-compatible process. Sens Actuators A 27:605–609

    Article  Google Scholar 

  • Tufte ON, Stelzer EL (1963) Piezoresistive properties of silicon diffused layers. J Appl Phys 34:3322–3327

    Article  Google Scholar 

  • Van Kampen RP, Wolffenbutte RF (1998) Modeling the mechanical behavior of bulk micromachined silicon accelerometers. Sens Actuators A 64:137–150

    Article  Google Scholar 

  • Yan G, Chan PCH, Hsing IM, Sharma RK, Sin JKO, Wang Y (2001) An improved TMAH Si-etching solution without attacking exposed aluminum. Sens Actuators A 89:135–141

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to Prof. S. K. Lahiri and (Late) Prof. S. Kal for their valuable suggestions. The work was partly supported by NPSM, Government of India. The authors acknowledge staff members of microelectronics and MEMS laboratory, IIT, Kharagpur for their help at various stages in the realization of the sensors. The authors acknowledge Ms. Linda Mary Jacob, Ms. Anju and Ms. Ashwini for their help in preparing the manuscript. The authors acknowledge the support from ADE, DRDO lab, Government of India for providing measurement facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ravi Sankar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sankar, A.R., Jency, J.G. & Das, S. Design, fabrication and testing of a high performance silicon piezoresistive Z-axis accelerometer with proof mass-edge-aligned-flexures. Microsyst Technol 18, 9–23 (2012). https://doi.org/10.1007/s00542-011-1371-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-011-1371-2

Keywords

Navigation