Skip to main content
Log in

Single-walled carbon nanotube network/poly composite thin film for flow sensor

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

A fabrication method about single-walled carbon nanotube (SWCNT) network and polydimethylsiloxane (PDMS) based composite thin film is reported, which can be used as flow sensor cell. This composite thin film is immersed in deionized water and salt solution with different flow rate tests. The morphology of SWCNTs on the surface of the composite thin film is characterized by scanning electron microscopy, revealing the SWCNTs are coated by PDMS chains. The induced voltage generates along the direction of the flowing liquid and depends significantly on the ionic concentration and flow velocity. Since the SWCNTs are fixed into PDMS matrix, the I–V curves of the composite thin film before and after several flow velocity measurements are exactly coincident, and the repeating flow-induced voltage experiment shows the composite thin film has a reliable electric characteristic and wide potential of device application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SWCNT:

Single-walled carbon nanotube

PDMS:

Polydimethylsiloxane

CNT:

Carbon nanotube

MWCNT:

Multi-walled carbon nanotube

NTN:

Nanotube network

DMF:

Dimethylformamide

PTFE:

Poly-tetrafluoro-ethylene

SEM:

Scanning electro microscope

References

  • Ahlskog M, Tarkiainen R, Roschier L, Hakonen P (2000) Single-electron transistor made of two crossing multiwalled carbon nanotubes and its noise properties. Appl Phys Lett 77:4037–4039. doi:10.1063/1.1332107

    Article  Google Scholar 

  • Cid CC, Cadena GJ, Jordi Riu, Maroto A, Rius FX, Batema GD, Koten G (2009) Selective detection of SO2 at room temperature based on organoplatinum functionalized single-walled carbon nanotube field effect transistors. Sens Actuators B 141:97–103. doi:10.10.16/j.snb.2009.05.021

    Article  Google Scholar 

  • Dresselhaus MS (1998) New tricks with nanotubes. Nature 391:19–20

    Article  Google Scholar 

  • Ebbesen TW (1994) Carbon nanotubes. Annnu Rev Mater Sci 24:235–264. doi:10.1146/annurev.ms.24.080194.001315

    Article  Google Scholar 

  • Ghosh S, Sood AK, Kumar N (2003) Carbon nanotube flow sensors. Science 299:1042–1044. doi:10.1126/science.1079080

    Article  Google Scholar 

  • Ghosh S, Sood AK, Ramaswamy S, Kumar N (2004) Flow-induced voltage and current generation in carbon nanotubes. Phys Rev B 70:205423 1–5. doi:10.1103/PhysRevB.70.205423

    Google Scholar 

  • Han IT, Kim HJ, Park YJ, Lee N, Jang JE, Kim JW, Jung JE, Kim JM (2002) Fabrication and characterization of gated field emitter arrays with self-aligned carbon nanotubes grown by chemical vapor deposition. Appl Phys Lett 81:2070–2072. doi:10.1063/1.1506408

    Article  Google Scholar 

  • Hou ZY, Xu D, Cai BC (2006) Ionization gas sensing in a microelectrode system with carbon nanotubes. Appl Phys Lett 89:213502 1–3. doi:10.1063/1.2392994

    Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. doi:10.1038/354056a0

    Article  Google Scholar 

  • Kim YL, Li B, An X, Hahm MG, Chen L, Washington M, Ajayan PM, Nayak SK, Busnaina A, Kar S, Jung YJ (2009a) Highly aligned scalable platinum-decorated single-wall carbon nanotube arrays for nanoscale electrical interconnects. ACS Nano 3:2818–2826. doi:10.1021/nn9007753

    Article  Google Scholar 

  • Kim JH, Heller DA, Jin H, Barone PW, Song C, Zhang J, Trudel LJ, Wogan GN, Tannenbaum SR, Strano MS (2009b) The rational design of nitric oxide selectivity in single-walled carbon nanotube near-infrared fluorescence sensors for biological detection. Nature Chemistry 1:473–481. doi:10.1038/NCHEM.332

    Article  Google Scholar 

  • Kral P, Shapiro M (2001) Nanotube electron drag in flowing liquids. Phys Rev Lett 86:131–134. doi:10.1103/PhysRevLett.86.131

    Article  Google Scholar 

  • Lee YH, Jang YT, Choi CH, Kim EK, Ju BK, Kim DH, Lee CW (2002) Direct nano-wiring carbon nanotube using growth barrier: a possible mechanism of selective lateral growth. J Appl Phys 91:6044–6050. doi:10.1063/1.1466523

    Article  Google Scholar 

  • Lee SB, Teo KBK, Amaratunga GAJ, Milne WI, Chhowalla M, Hasko DG, Ahmed H (2003) Fabrication of multiwalled carbon nanotube bridges by poly-methylmethacrylate suspended dispersion. J Vac Sci Technol B 21:996–999. doi:10.1116/1.1570843

    Article  Google Scholar 

  • Lee K, Lee SS, Lee JA, Lee KC, Ji S (2010) Carbon nanotube film piezoresistors embedded in polymer membranes. Appl Phys Lett 96:013511 1–3. doi:10.1063/1.3272686

  • Liu JW, Dai LM, Baur JW (2007) Multiwalled carbon nanotubes for flow-induced voltage generation. J Appl Phys 101:064312 1–6. doi:10.1063/1.2710776

  • Niu C, Sichel EK, Hoch R, Moy D, Tennent H (1997) High Power Electrochemical Capacitors Based on Carbon Nanotube Electrodes. Appl Phys Lett 70:1480–1482. doi:10.1063/1.118568

    Article  Google Scholar 

  • Ruoff RS, Lorents DC (1995) Mechanical and Thermal Properties of Carbon Nanotubes. Carbon 33:915–930. doi:10.1016/0008-6223(95)00021-5

    Article  Google Scholar 

  • Snow ES, Perkins FK, House EJ, Badescu SC, Reinecke TL (2005) Chemical detection with a single-walled carbon nanotube. Capacitor Sci 307:1942–1945. doi:10.1126/science.1109128

    Google Scholar 

  • Song X, Liu S, Gan Z, Lv Q, Cao H, Yan H (2009) Controllable fabrication of carbon nanotube-polymer hybrid thin film for strain sensing. Microelectro Eng 86:2330–2333. doi:10.1016/j.mee.2009.04.012

    Article  Google Scholar 

  • Tooski SB (2010) Sense Toxins/Sewage Gases by Chemically and Biologically Functionalized Single-Walled Carbon Nanotube Sensor Based Microwave Resonator. J Appl Phys 107:014702 1–8. doi:10.1063/1.3277020

  • Wu ZC, Chen ZH, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG (2004) Transparent, conductive carbon nanotube films. Science 305:1273–1276. doi:10.1126/science.1101243

    Article  Google Scholar 

  • Yang L, Li M, Qu Y, Dong Z, Li WJ (2009) Carbon nanotube-sensor-integrated microfluidic platform for real-time chemical concentration detection. Electrophoresis 30:1–8. doi:10.1002/elps.200900126

    Article  Google Scholar 

Download references

Acknowledgments

Our team is grateful to School of Mechanical Science and Engineering, Huazhong University of Science and Technology and Wuhan National Laboratory for Optoelectronics for supporting this work. This work was supported by national high technology research and development “863” program of China (No. 2007AA04Z348).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, H., Gan, Z., Lv, Q. et al. Single-walled carbon nanotube network/poly composite thin film for flow sensor. Microsyst Technol 16, 955–959 (2010). https://doi.org/10.1007/s00542-010-1055-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-010-1055-3

Keywords

Navigation