Skip to main content
Log in

Electrophysical properties of composite films based on multiwalled carbon nanotubes under hydrostatic pressure

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The effect hydrostatic pressure of up to 9 GPa has on the electrical behavior of polymer composites based on multiwalled carbon nanotubes (MWCNT) is investigated at room temperature. The ratio R 9GPa/R 0 ≈ 7 for samples with resistance in the kilo-ohm range is higher than for samples in the ohm range. Pressure-induced MWCNT features at P ≈ 1.5 GPa are associated with the deformation of the circular form of nanotube walls, in agreement with theoretical predictions. Measurements of direct and reverse resistance and current voltage characteristics under pressure demonstrate the reversibility of electrophysical properties, which could find practical application in creating pressure sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ijima, S., Nature, 1991, vol. 56, p. 354.

    Google Scholar 

  2. Charlier, J.-Ch., Blase, X., and Roche, S., Rev. Mod. Phys., 2007, vol. 79, p. 677.

    Article  ADS  Google Scholar 

  3. Muhl, T., Elefant, D., Graff, A., Kozhuharova, R., Leonhardt, A., Monch, I., Ritschel, M., Simon, P., Groudeva-Zotova, S., and Schneider, C.M., J. Appl. Phys., 2003, vol. 93, p. 7894.

    Article  ADS  Google Scholar 

  4. Zhao, B., Mönch, I., Vinzelberg, H., Möhl, T., and Schneider, C.M., Appl. Phys. Lett., 2002, vol. 80, p. 3144.

    Article  ADS  Google Scholar 

  5. Thamankar, R., Niyogi, S., Yoo, B.Y., Rheem, Y.W., Myung, N.V., Haddon, R.C., and Kawakamia, R.K., Appl. Phys. Lett., 2006, vol. 89, p. 033119.

    Article  ADS  Google Scholar 

  6. Monteverde, M., Garbarino, G., Núñez-Regueiro, M., Souletie, J., Acha, C., Jing, X., Lu, L., Pan, Z.W., Xie, S.S., and Egger, R., Phys. Rev. Lett., 2006, vol. 97, p. 176401.

    Article  ADS  Google Scholar 

  7. Tang, D.S., Bao, Z.X., Wang, L.J., Chen, L.C., Sun, L.F., Liu, Z.Q., Zhou, W.Y., and Xie, S.S., J. Phys. Chem. Solids, 2000, vol. 61, p. 1175.

    Article  ADS  Google Scholar 

  8. Whitby, R.L.D., Gun’ko, V.M., Fukuda, T., and Maekawa, T., Carbon, 2010, vol. 48, p. 3635.

    Article  Google Scholar 

  9. Reich, S., Thomsen, C., and Ordejón, P., Phys. Rev. B, 2002, vol. 65, p. 153407.

    Article  ADS  Google Scholar 

  10. Pan, L., Chortos, A., Yu, G., Wang, Y., Isaacson, S., Allen, R., Shi, Yi, Dauskardt, R., and Bao, Zh., Nat. Commun., 2014, vol. 5, p. 3002. doi 10.1038/ncomms4002

    ADS  Google Scholar 

  11. Machado, W.S., Athayde, P.L., Mamo, M.A., van Otterlo, W.A.L., Coville, N.J., and Hummelgen, I.A., Organ. Electron., 2010, vol. 11, p. 1736.

    Article  Google Scholar 

  12. Fung, C.K.M., Zhang, M.Q.H., Chan, R.H.M., and Li, W.J., IEEE MEMS, 2005, vol. 252, p. 2005. doi 10.1109/MEMSYS.2005.1453914

    Google Scholar 

  13. Hu, C.H., Liu, C.H., Chen, L.Z., Peng, Y.C., and Fan, S.S., Appl. Phys. Lett., 2008, vol. 93, p. 033108.

    Article  ADS  Google Scholar 

  14. Wang, P., Geng, Sh., and Ding, T., Composit. Sci. Technol., 2010, vol. 70, p. 1571.

    Article  Google Scholar 

  15. Tangney, P., Capaz, R.B., Spataru, C.D., Cohen, M.L., and Louie, S.G., Nano Lett., 2005, vol. 5, p. 2268.

    Article  ADS  Google Scholar 

  16. Tang, J., Qin, L.-Ch., Sasaki, T., Yudasaka, M., Matsushita, A., and Iijima, S., Phys. Rev. Lett., 2000, vol. 85, p. 1887.

    Article  ADS  Google Scholar 

  17. Shima, H. and Sato, M., Phys. Status Solidi A, 2009, vol. 206, no. 10, p. 2228.

    Article  ADS  Google Scholar 

  18. Shima, H., Ghosh, S., Arroyo, M., Iiboshi, K., and Sato, M., Comput. Mater. Sci., 2012, vol. 52, p. 90.

    Article  Google Scholar 

  19. Filippov, A.K. and Fedorov, M.A., Proc. 4th Int. Conf. on Electromagnetic Processing of Materials, Lion, Oct. 14–17, 2003, p. 13

    Google Scholar 

  20. Filippov, A.K. and Pak, V.N., Proc. Int. Workshop on Fullerenes and Atomic Clusters, St. Petersburg, July 2–6, 2007, p. 211.

    Google Scholar 

  21. Fluoroplastic Technology JSC. Handbook. ftoroplast@com.ru. www.plastpolymer.org/f.42.htm

  22. Khvostantsev, L.G., Slesarev, V.N., and Brazhkin, V.V., High Pressure Res., 2004, vol. 24, p. 371.

    Article  ADS  Google Scholar 

  23. Sánchez-González, J., Macías-García, A., AlexandreFranco, M.F., and Gómez-Serrano, V., Carbon, 2005, vol. 43, p. 741.

    Article  Google Scholar 

  24. Ma, M.D., Liu, J.Z., Wang, L., Shen, L., Xie, L., Wie, F., Zhu, J., Gong, Q., Liang, J., and Zheng, Q., Phys. Rev. B, 2010, vol. 81, p. 235420.

    Article  ADS  Google Scholar 

  25. Singh, L.T. and Nanda, K.K., AIP Adv., 2012, vol. 2, p. 022103.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Babaev.

Additional information

Original Russian Text © T.R. Arslanov, A.A. Babaev, R.K. Arslanov, P.P. Khokhlachev, E.I. Terukov, A.K. Filippov, 2015, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2015, Vol. 79, No. 6, pp. 832–835.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arslanov, T.R., Babaev, A.A., Arslanov, R.K. et al. Electrophysical properties of composite films based on multiwalled carbon nanotubes under hydrostatic pressure. Bull. Russ. Acad. Sci. Phys. 79, 755–758 (2015). https://doi.org/10.3103/S1062873815060039

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873815060039

Keywords

Navigation