Skip to main content
Log in

Fabrication of components for a valve-less micropump or microejector by multilevel electroforming technology

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Both the workable micropump and microejector actuated by the shear mode PZT actuators are successfully fabricated. They are based on a similar design and the same process that uses UV-LIGA multilevel electroforming technology. The micropump consists of a vibration plate and a chamber plate while the microejector consists of the same vibration plate and a nozzle plate. The AZ 9260 positive photoresist is used as the electroforming mould. The two alternating steps, the photoresist patterning and nickel electroforming, make components form a quasi 3D (or 2.5D) multilevel microstructure. An over-electroforming technique is employed to form the nozzles in nozzle plate for the microejector. Some useful experimental data about the over-electroforming are proposed to predict and control the orifice diameter. The volume change of the chamber is estimated by both the numerical solution and actual measurement. The liquid ejection of the microejector is observed by a visualization system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Andersson H, Wijnggart Wvd, Nilsson P, Enoksson P, Stemme G (2001) A valve-less diffuser micropump for microfluidic analytical systems. Sensors Actuators B 72:259–265

    Article  Google Scholar 

  • Cuiy A, Lawes RA (1997) A new sacrificial layer process for the fabrication of micromechanical systems. J Micromech Microeng 7:128–130

    Article  Google Scholar 

  • Gobet J, Cardot F, Bergqvist J, Rudolf F (1993) Electrodeposition of 3D microstructures on silicon. J Micromech Microeng 3:123–130

    Article  Google Scholar 

  • Guckel H, Christenson TR, Skrobis KJ, Denton DD, Choi B, Lovell EG, Lee JW, Bajikar SS, Chapman TW (1990) Deep X-ray and UV lithographies for micromechanics. IEEE solid-state sensor and actuator workshop 4th technical digest, Hilton Head Island, South Carolina, pp 118–122

  • Huang L, Wang W, Murphy MC, Lian K, Ling ZG (2000) LIGA fabrication and test of a DC type magnetohydyodynamic (MHD) micropump. Microsyst Technol 6:235–240

    Article  Google Scholar 

  • Kamper KP, Ehrfeld W, Dopper J, Hessel V, Lehr H, Lowe H, Richter Th, Wolf A (1997) Microfluidic components for biological and chemical microreactors. IEEE international workshop on micro electro mechanical systems, MEMS ‘97, Nagoya, pp 338–343

  • Kohlmeier T, Seidemann V, Buttgenbach S, Gatzen HH (2002) Application of UV depth lithography and 3D-microforming for high aspect ratio electromagnetic microactuator components. Microsyst Technol 8:304–307

    Article  Google Scholar 

  • Kohlmeier T, Seidemann V, Buttgenbach S, Gatzen HH (2004) An investigation on technologies to fabricate microcoils for miniaturized actuator systems. Microsyst Technol 10:175–181

    Article  Google Scholar 

  • Lennon E, Ayela F (2002) Electrodeposition through thick photoresist moulds for the fabrication of a sharp chromium microtip. J Micromech Microeng 12:122–127

    Article  Google Scholar 

  • Liu C, Cui T, Zhou Z (2003) Modal analysis of a unimorph piezoelectrical transducer. Microsyst Technol 9:474–479

    Article  Google Scholar 

  • Loechel B (2000) Thick-layer resists for surface micromachining. J Micromech Microeng 10:108–115

    Article  Google Scholar 

  • Lorenz H, Paratte L, Luthier R, Rooij NF, Renaud P (1996) Low-cost technology for multilayer electroplated parts using laminated dry film resist. Sensors Actuators A 53(1–3):364–368

    Article  Google Scholar 

  • Steinert CP, Goutier I, Gutmanna O, Sandmaier H, Dauba M, Heij Bd, Zengerle R (2004) A highly parallel picoliter dispenser with an integrated novel capillary channel structure. Sensors Actuators A 116:171–177

    Article  Google Scholar 

  • Wang EN, Zhang L, Jiang L, Koo JM, Maveety JG, Sanchez EA (2004) Micromachined jets for liquid impingement cooling of VLSI chips. J Microelectromech Syst 13(5):833–842

    Article  Google Scholar 

  • Yang Y, Chang SC, Bharathan J, Liu J (2000) Organic/polymeric electroluminescent devices processed by hybrid ink-jet printing. J Mater Sci Mater Electron 11:89–96

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Science Council of Taiwan for financially supporting this research under Contract no. NSC 92-2212-E-018-001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. C. Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S.C., Cheng, C.H. & Lin, Y.C. Fabrication of components for a valve-less micropump or microejector by multilevel electroforming technology. Microsyst Technol 13, 455–463 (2007). https://doi.org/10.1007/s00542-006-0209-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-006-0209-9

Keywords

Navigation