Skip to main content
Log in

Assessment of dexmedetomidine effects on left ventricular function using pressure–volume loops in rats

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

The role of dexmedetomidine on left ventricular function is ambiguous. We analyzed pressure–volume loops to investigate whether dexmedetomidine has a myocardial depressive effect.

Methods

Thirty-two Sprague–Dawley rats were anesthetized and a pressure–volume loop catheter was advanced into the left ventricle. Rats were divided into four groups (n = 8 each). The control group received a 10-min infusion of 0.1 ml of normal saline, and the other three groups received 1.0 (Dex1.0 group) , 2.5 (Dex2.5 group), and 5.0 μg/kg (Dex5.0 group) dexmedetomidine in a similar fashion to the control group. Steady-state hemodynamic parameters were recorded. The inferior vena cava was occluded intermittently to assess preload-independent indices.

Results

Compared with the control group, changes in the Dex1.0 group were insignificant. In the Dex2.5 group, only the systolic blood pressure was higher (vs control, P = 0.03), and other parameters were insignificant. The Dex5.0 group exhibited a lower heart rate, higher systolic blood pressure, higher arterial elastance (vs control, all P < 0.001), and unaltered cardiac output. The Dex5.0 group showed steeper slopes of end-systolic pressure increment and end-systolic pressure–volume relationship than the control, Dex1.0, and Dex2.5 groups (all P < 0.001). Slopes of end-diastolic pressure decrement and end-diastolic pressure–volume relationship did not differ among groups.

Conclusion

Dexmedetomidine had no direct myocardial depressant effect in the rat heart in doses that are similar to those encountered under clinical conditions. Dexmedetomidine did not significantly alter the ability of the heart to cope with bradycardia and greatly increased afterload. Their potentially negative impact on cardiac output was effectively attenuated by improved myocardial contractility and preserved diastolic function in healthy subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Virtanen R, Savola JM, Saano V, Nyman L. Characterization of the selectivity, specificity and potency of medetomidine as an alpha 2-adrenoceptor agonist. Eur J Pharmacol. 1988;150:9–14.

    Article  CAS  PubMed  Google Scholar 

  2. Paris A, Tonner PH. Dexmedetomidine in anaesthesia. Curr Opin Anaesthesiol. 2005;18:412–8.

    Article  PubMed  Google Scholar 

  3. Lin TF, Yeh YC, Lin FS, Wang YP, Lin CJ, Sun WZ, Fan SZ. Effect of combining dexmedetomidine and morphine for intravenous patient-controlled analgesia. Br J Anaesth. 2009;102:117–22.

    Article  CAS  PubMed  Google Scholar 

  4. Quintin L, Ghignone M, Pujol JF. The ability of the alpha 2-adrenergic agonist clonidine to suppress central noradrenergic hyperactivity secondary to hemodynamic or environmental stimuli. J Cardiovasc Pharmacol. 1987;10(Suppl 12):S128–34.

    CAS  PubMed  Google Scholar 

  5. Kallio A, Scheinin M, Koulu M, Ponkilainen R, Ruskoaho H, Viinamaki O, Scheinin H. Effects of dexmedetomidine, a selective alpha 2-adrenoceptor agonist, on hemodynamic control mechanisms. Clin Pharmacol Ther. 1989;46:33–42.

    Article  CAS  PubMed  Google Scholar 

  6. Ingersoll-Weng E, Manecke GR Jr, Thistlethwaite PA. Dexmedetomidine and cardiac arrest. Anesthesiology. 2004;100:738–9.

    Article  PubMed  Google Scholar 

  7. Sichrovsky TC, Mittal S, Steinberg JS. Dexmedetomidine sedation leading to refractory cardiogenic shock. Anesth Analg. 2008;106:1784–6.

    Article  CAS  PubMed  Google Scholar 

  8. Jaideep CN, Bhargava DV. Good vagal tone, a tourniquet and dexmedetomidine: recipe for disaster. Indian J Anaesth. 2015;59:450–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee SH, Choi YS, Hong GR, Oh YJ. Echocardiographic evaluation of the effects of dexmedetomidine on cardiac function during total intravenous anaesthesia. Anaesthesia. 2015;70:1052–9.

    Article  CAS  PubMed  Google Scholar 

  10. Flacke WE, Flacke JW, Blow KD, McIntee DF, Bloor BC. Effect of dexmedetomidine, an alpha 2-adrenergic agonist, in the isolated heart. J Cardiothorac Vasc Anesth. 1992;6:418–23.

    Article  CAS  PubMed  Google Scholar 

  11. Schmeling WT, Kampine JP, Roerig DL, Warltier DC. The effects of the stereoisomers of the alpha 2-adrenergic agonist medetomidine on systemic and coronary hemodynamics in conscious dogs. Anesthesiology. 1991;75:499–511.

    Article  CAS  PubMed  Google Scholar 

  12. Flacke JW, Flacke WE, Bloor BC, McIntee DF. Hemodynamic effects of dexmedetomidine, an alpha 2-adrenergic agonist, in autonomically denervated dogs. J Cardiovasc Pharmacol. 1990;16:616–23.

    Article  CAS  PubMed  Google Scholar 

  13. Watson LE, Sheth M, Denyer RF, Dostal DE. Baseline echocardiographic values for adult male rats. J Am Soc Echocardiogr. 2004;17:161–7.

    Article  PubMed  Google Scholar 

  14. Burkhoff D, Mirsky I, Suga H. Assessment of systolic and diastolic ventricular properties via pressure–volume analysis: a guide for clinical, translational, and basic researchers. Am J Physiol Heart Circ Physiol. 2005;289:H501–12.

    Article  CAS  PubMed  Google Scholar 

  15. Georgakopoulos D, Mitzner WA, Chen CH, Byrne BJ, Millar HD, Hare JM, Kass DA. In vivo murine left ventricular pressure–volume relations by miniaturized conductance micromanometry. Am J Physiol. 1998;274:H1416–22.

    CAS  PubMed  Google Scholar 

  16. Park HJ, Kim YH, Koh HJ, Park CS, Kang SH, Choi JH, Moon DE. Analgesic effects of dexmedetomidine in vincristine-evoked painful neuropathic rats. J Korean Med Sci. 2012;27:1411–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Filbey WA, Sanford DT, Baghdoyan HA, Koch LG, Britton SL, Lydic R. Eszopiclone and dexmedetomidine depress ventilation in obese rats with features of metabolic syndrome. Sleep. 2014;37:871–80.

    PubMed  PubMed Central  Google Scholar 

  18. Bol CJ, Vogelaar JP, Mandema JW. Anesthetic profile of dexmedetomidine identified by stimulus-response and continuous measurements in rats. J Pharmacol Exp Ther. 1999;291:153–60.

    CAS  PubMed  Google Scholar 

  19. Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008;22:659–61.

    Article  CAS  PubMed  Google Scholar 

  20. Hammer GB, Drover DR, Cao H, Jackson E, Williams GD, Ramamoorthy C, Van Hare GF, Niksch A, Dubin AM. The effects of dexmedetomidine on cardiac electrophysiology in children. Anesth Analg. 2008;106:79–83 (table of contents).

  21. Singh S, Singh A. Dexmedetomidine induced catecholamine suppression in pheochromocytoma. J Nat Sci Biol Med. 2014;5:182–3.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Housmans PR. Effects of dexmedetomidine on contractility, relaxation, and intracellular calcium transients of isolated ventricular myocardium. Anesthesiology. 1990;73:919–22.

    Article  CAS  PubMed  Google Scholar 

  23. Flacke WE, Flacke JW, Bloor BC, McIntee DF, Sagan M. Effects of dexmedetomidine on systemic and coronary hemodynamics in the anesthetized dog. J Cardiothorac Vasc Anesth. 1993;7:41–9.

    Article  CAS  PubMed  Google Scholar 

  24. Kass DA, Beyar R, Lankford E, Heard M, Maughan WL, Sagawa K. Influence of contractile state on curvilinearity of in situ end-systolic pressure–volume relations. Circulation. 1989;79:167–78.

    Article  CAS  PubMed  Google Scholar 

  25. Lee SH, Na S, Kim N, Ban MG, Shin SE, Oh YJ. The effects of dexmedetomidine on myocardial function assessed by tissue doppler echocardiography during general anesthesia in patients with diastolic dysfunction: a CONSORT-prospective, randomized, controlled trial. Medicine (Baltimore). 2016;95:e2805.

    Article  CAS  Google Scholar 

  26. Philipp M, Brede M, Hein L. Physiological significance of alpha(2)-adrenergic receptor subtype diversity: one receptor is not enough. Am J Physiol Regul Integr Comp Physiol. 2002;283:R287–95.

    Article  CAS  PubMed  Google Scholar 

  27. Akata T. Cellular and molecular mechanisms regulating vascular tone. Part 1: basic mechanisms controlling cytosolic Ca2+ concentration and the Ca2+-dependent regulation of vascular tone. J Anesth. 2007;21:220–31.

    Article  PubMed  Google Scholar 

  28. Akata T. Cellular and molecular mechanisms regulating vascular tone. Part 2: regulatory mechanisms modulating Ca2+ mobilization and/or myofilament Ca2+ sensitivity in vascular smooth muscle cells. J Anesth. 2007;21:232–42.

    Article  PubMed  Google Scholar 

  29. Figueroa XF, Poblete MI, Boric MP, Mendizabal VE, Adler-Graschinsky E, Huidobro-Toro JP. Clonidine-induced nitric oxide-dependent vasorelaxation mediated by endothelial alpha(2)-adrenoceptor activation. Br J Pharmacol. 2001;134:957–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wong ES, Man RY, Vanhoutte PM, Ng KF. Dexmedetomidine induces both relaxations and contractions, via different {alpha}2-adrenoceptor subtypes, in the isolated mesenteric artery and aorta of the rat. J Pharmacol Exp Ther. 2010;335:659–64.

    Article  CAS  PubMed  Google Scholar 

  31. Xu H, Aibiki M, Seki K, Ogura S, Ogli K. Effects of dexmedetomidine, an alpha2-adrenoceptor agonist, on renal sympathetic nerve activity, blood pressure, heart rate and central venous pressure in urethane-anesthetized rabbits. J Auton Nerv Syst. 1998;71:48–54.

    Article  CAS  PubMed  Google Scholar 

  32. Penttila J, Helminen A, Anttila M, Hinkka S, Scheinin H. Cardiovascular and parasympathetic effects of dexmedetomidine in healthy subjects. Can J Physiol Pharmacol. 2004;82:359–62.

    Article  PubMed  Google Scholar 

  33. Tsuzawa K, Minoura Y, Takeda S, Inagaki K, Onimaru H. Effects of alpha2-adorenoceptor agonist dexmedetomidine on respiratory rhythm generation of newborn rats. Neurosci Lett. 2015;597:117–20.

    Article  CAS  PubMed  Google Scholar 

  34. Furst SR, Weinger MB. Dexmedetomidine, a selective alpha 2-agonist, does not potentiate the cardiorespiratory depression of alfentanil in the rat. Anesthesiology. 1990;72:882–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a faculty research grant from Yonsei University College of Medicine for 2010 (6-2012-0031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Jun Oh.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K., Hwang, H.J., Kim, O.S. et al. Assessment of dexmedetomidine effects on left ventricular function using pressure–volume loops in rats. J Anesth 31, 18–24 (2017). https://doi.org/10.1007/s00540-016-2278-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-016-2278-y

Keywords

Navigation