Skip to main content

Advertisement

Log in

Resuscitation after hemorrhagic shock: the effect on the liver—a review of experimental data

  • Review Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

The liver is currently considered to be one of the first organs to be subjected to the hypoxic insult inflicted by hemorrhagic shock. The oxidative injury caused by resuscitation also targets the liver and can lead to malfunction and the eventual failure of this organ. Each of the various fluids, vasoactive drugs, and pharmacologic substances used for resuscitation has its own distinct effect(s) on the liver, and the anesthetic agents used during surgical resuscitation also have an impact on hepatocytes. The aim of our study was to identify the specific effect of these substances on the liver. To this end, we conducted a literature search of MEDLINE for all types of articles published in English, with a focus on articles published in the last 12 years. Our search terms were “hemorrhagic shock,” “liver,” “resuscitation,” “vasopressors,” and “anesthesia.” Experimental studies form the majority of articles found in bibliographic databases. The effect of a specific resuscitation agent on the liver is assessed mainly by measuring apoptotic pathway regulators and inflammation-induced indicators. Apart from a wide range of pharmacological substances, modifications of Ringer’s Lactate, colloids, and pyruvate provide protection to the liver after hemorrhage and resuscitation. In this setting, it is of paramount importance that the treating physician recognize those agents that may attenuate liver injury and avoid using those which inflict additional damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kauvar DS, Lefering R, Wade CE. Impact of hemorrhage on trauma outcome: an overview of epidemiology, clinical presentations, and therapeutic considerations. J Trauma. 2006;60:S3–11.

    Article  PubMed  Google Scholar 

  2. Heckbert SR, Vedder NB, Hoffman W, Winn RK, Hudson LD, Jurkovich GJ, Copass MK, Harlan JM, Rice CL, Maier RV. Outcome after hemorrhagic shock in trauma patients. J Trauma. 1998;45:545–9.

    Article  PubMed  CAS  Google Scholar 

  3. Helling TS. The liver and hemorrhagic shock. J Am Coll Surg. 2005;201:774–83.

    Article  PubMed  Google Scholar 

  4. Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med. 1997;185:1481–6.

    Article  PubMed  CAS  Google Scholar 

  5. Paxian M, Bauer I, Rensing H, Jaeschke H, Mautes AE, Kolb SA, Wolf B, Stockhausen A, Jeblick S, Bauer M. Recovery of hepatocellular ATP and “pericentral apoptosis” after hemorrhage and resuscitation. FASEB J. 2003;17:993–1002.

    Article  PubMed  CAS  Google Scholar 

  6. Hurt RT, Zakaria el R, Matheson PJ, Cobb ME, Parker JR, Garrison RN. Hemorrhage-induced hepatic injury and hypoperfusion can be prevented by direct peritoneal resuscitation. J Gastrointest Surg. 2009;13:587–94.

    Article  PubMed  Google Scholar 

  7. Matsutani T, Kang SC, Miyashita M, Sasajima K, Choudhry MA, Bland KI, Chaudry IH. Liver cytokine production and ICAM-1 expression following bone fracture, tissue trauma, and hemorrhage in middle-aged mice. Am J Physiol Gastrointest Liver Physiol. 2007;292:G268–74.

    Article  PubMed  CAS  Google Scholar 

  8. Lee CC, Chang IJ, Yen ZS, Hsu CY, Chen SY, Su CP, Chiang WC, Chen SC, Chen WJ. Delayed fluid resuscitation in hemorrhagic shock induces proinflammatory cytokine response. Ann Emerg Med. 2007;49:37–44.

    Article  PubMed  Google Scholar 

  9. Yokoyama Y, Baveja R, Sonin N, Nakanishi K, Zhang JX, Clemens MG. Altered endothelin receptor subtype expression in hepatic injury after ischemia/reperfusion. Shock. 2000;13:72–8.

    Article  PubMed  CAS  Google Scholar 

  10. Krejci V, Hiltebrand L, Banic A, Erni D, Wheatley AM, Sigurdsson GH. Continuous measurements of microcirculatory blood flow in gastrointestinal organs during acute haemorrhage. Br J Anaesth. 2000;84:468–75.

    Article  PubMed  CAS  Google Scholar 

  11. Rensing H, Bauer I, Peters I, Wein T, Silomon M, Jaeschke H, Bauer M. Role of reactive oxygen species for hepatocellular injury and heme oxygenase-1 gene expression after hemorrhage and resuscitation. Shock. 1999;12:300–8.

    Article  PubMed  CAS  Google Scholar 

  12. Kubulus D, Mathes A, Pradarutti S, Raddatz A, Heiser J, Pavlidis D, Wolf B, Bauer I, Rensing H. Hemin arginate-induced heme oxygenase 1 expression improves liver microcirculation and mediates an anti-inflammatory cytokine response after hemorrhagic shock. Shock. 2008;29:583–90.

    PubMed  CAS  Google Scholar 

  13. Kan WH, Hsu JT, Schwacha MG, Choudhry MA, Raju R, Bland KI, Chaudry IH. Selective inhibition of iNOS attenuates trauma-hemorrhage/resuscitation-induced hepatic injury. J Appl Physiol. 2008;105:1076–82.

    Article  PubMed  CAS  Google Scholar 

  14. Siesjo BK. Calcium and cell death. Magnesium. 1989;8:223–37.

    PubMed  CAS  Google Scholar 

  15. Tweardy DJ, Khoshnevis MR, Yu B, Mastrangelo MA, Hardison EG, Lopez JA. Essential role for platelets in organ injury and inflammation in resuscitated hemorrhagic shock. Shock. 2006;26:386–90.

    Article  PubMed  Google Scholar 

  16. Jaeschke H, Farhood A. Neutrophil and Kupffer cell-induced oxidant stress and ischemia–reperfusion injury in rat liver. Am J Physiol. 1991;260:G355–62.

    PubMed  CAS  Google Scholar 

  17. Jaeschke H. Reactive oxygen and mechanisms of inflammatory liver injury. J Gastroenterol Hepatol. 2000;15:718–24.

    Article  PubMed  CAS  Google Scholar 

  18. Jaskille A, Koustova E, Rhee P, Britten-Webb J, Chen H, Valeri CR, Kirkpatrick JR, Alam HB. Hepatic apoptosis after hemorrhagic shock in rats can be reduced through modifications of conventional Ringer’s solution. J Am Coll Surg. 2006;202:25–35.

    Article  PubMed  Google Scholar 

  19. Ayuste EC, Chen H, Koustova E, Rhee P, Ahuja N, Chen Z, Valeri CR, Spaniolas K, Mehrani T, Alam HB. Hepatic and pulmonary apoptosis after hemorrhagic shock in swine can be reduced through modifications of conventional Ringer’s solution. J Trauma. 2006;60:52–63.

    Article  PubMed  Google Scholar 

  20. Todd SR, Malinoski D, Muller PJ, Schreiber MA. Lactated Ringer’s is superior to normal saline in the resuscitation of uncontrolled hemorrhagic shock. J Trauma. 2007;62:636–9.

    Article  PubMed  Google Scholar 

  21. Shires GT, Browder LK, Steljes TP, Williams SJ, Browder TD, Barber AE. The effect of shock resuscitation fluids on apoptosis. Am J Surg. 2005;189:85–91.

    Article  PubMed  Google Scholar 

  22. Jaskille A, Alam HB, Rhee P, Hanes W, Kirkpatrick JR, Koustova E. d-lactate increases pulmonary apoptosis by restricting phosphorylation of bad and eNOS in a rat model of hemorrhagic shock. J Trauma. 2004;57:262–9. Discussion 69–70.

    Google Scholar 

  23. Deb S, Sun L, Martin B, Talens E, Burris D, Kaufmann C, Rich N, Rhee P. Lactated ringer’s solution and hetastarch but not plasma resuscitation after rat hemorrhagic shock is associated with immediate lung apoptosis by the up-regulation of the Bax protein. J Trauma. 2000;49:47–53. Discussion 53–5.

    Google Scholar 

  24. Mulier KE, Beilman GJ, Conroy MJ, Taylor JH, Skarda DE, Hammer BE. Ringer’s ethyl pyruvate in hemorrhagic shock and resuscitation does not improve early hemodynamics or tissue energetics. Shock. 2005;23:248–52.

    PubMed  CAS  Google Scholar 

  25. Borle AB, Stanko RT. Pyruvate reduces anoxic injury and free radical formation in perfused rat hepatocytes. Am J Physiol. 1996;270:G535–40.

    PubMed  CAS  Google Scholar 

  26. Willems JL, de Kort AF, Vree TB, Trijbels JM, Veerkamp JH, Monnens LA. Non-enzymic conversion of pyruvate in aqueous solution to 2,4-dihydroxy-2-methylglutaric acid. FEBS Lett. 1978;86:42–4.

    Article  PubMed  CAS  Google Scholar 

  27. Sims CA, Wattanasirichaigoon S, Menconi MJ, Ajami AM, Fink MP. Ringer’s ethyl pyruvate solution ameliorates ischemia/reperfusion-induced intestinal mucosal injury in rats. Crit Care Med. 2001;29:1513–8.

    Article  PubMed  CAS  Google Scholar 

  28. Tawadrous ZS, Delude RL, Fink MP. Resuscitation from hemorrhagic shock with Ringer’s ethyl pyruvate solution improves survival and ameliorates intestinal mucosal hyperpermeability in rats. Shock. 2002;17:473–7.

    Article  PubMed  Google Scholar 

  29. Sharma P, Walsh KT, Kerr-Knott KA, Karaian JE, Mongan PD. Pyruvate modulates hepatic mitochondrial functions and reduces apoptosis indicators during hemorrhagic shock in rats. Anesthesiology. 2005;103:65–73.

    Article  PubMed  Google Scholar 

  30. Sharma P, Mongan PD. Hypertonic sodium pyruvate solution is more effective than Ringer’s ethyl pyruvate in the treatment of hemorrhagic shock. Shock. 2010;33:532–40.

    PubMed  CAS  Google Scholar 

  31. Cai B, Brunner M, Wang H, Wang P, Deitch EA, Ulloa L. Ethyl pyruvate improves survival in awake hemorrhage. J Mol Med (Berl). 2009;87:423–33.

    Article  CAS  Google Scholar 

  32. Chiara O, Pelosi P, Brazzi L, Bottino N, Taccone P, Cimbanassi S, Segala M, Gattinoni L, Scalea T. Resuscitation from hemorrhagic shock: experimental model comparing normal saline, dextran, and hypertonic saline solutions. Crit Care Med. 2003;31:1915–22.

    Article  PubMed  CAS  Google Scholar 

  33. Tsai MC, Chen WJ, Ching CH, Chuang JI. Resuscitation with hydroxyethyl starch solution prevents nuclear factor kappaB activation and oxidative stress after hemorrhagic shock and resuscitation in rats. Shock. 2007;27:527–33.

    Article  PubMed  CAS  Google Scholar 

  34. Wu D, Dai H, Arias J, Latta L, Abraham WM. Low-volume resuscitation from traumatic hemorrhagic shock with Na+/H+ exchanger inhibitor. Crit Care Med. 2009;37:1994–9.

    Article  PubMed  CAS  Google Scholar 

  35. Rhee P, Wang D, Ruff P, Austin B, DeBraux S, Wolcott K, Burris D, Ling G, Sun L. Human neutrophil activation and increased adhesion by various resuscitation fluids. Crit Care Med. 2000;28:74–8.

    Article  PubMed  CAS  Google Scholar 

  36. Hoppen RA, Corso CO, Grezzana TJ, Severino A, Dal-Pizzol F, Ritter C. Hypertonic saline and hemorrhagic shock: hepatocellular function and integrity after six hours of treatment. Acta Cir Bras. 2005;20:414–7.

    Article  PubMed  Google Scholar 

  37. Deree J, Loomis WH, Wolf P, Coimbra R. Hepatic transcription factor activation and proinflammatory mediator production is attenuated by hypertonic saline and pentoxifylline resuscitation after hemorrhagic shock. J Trauma. 2008;64:1230–8. Discussion 38–9.

    Google Scholar 

  38. Corso CO, Okamoto S, Leiderer R, Messmer K. Resuscitation with hypertonic saline dextran reduces endothelial cell swelling and improves hepatic microvascular perfusion and function after hemorrhagic shock. J Surg Res. 1998;80:210–20.

    Article  PubMed  CAS  Google Scholar 

  39. Corso CO, Okamoto S, Ruttinger D, Messmer K. Hypertonic saline dextran attenuates leukocyte accumulation in the liver after hemorrhagic shock and resuscitation. J Trauma. 1999;46:417–23.

    Article  PubMed  CAS  Google Scholar 

  40. Nakatani T, Sakamoto Y, Ando H, Kobayashi K. Effects of fluid resuscitation with recombinant human serum albumin solution on maintaining hepatic energy metabolism in hemorrhagic shock rabbits. Res Exp Med (Berl). 1996;196:317–25.

    CAS  Google Scholar 

  41. Lu XL, Zheng CY, Xiao D, Wang YQ, Suo XY, Yu PZ, Xu YH, Ma TM, Su ZG. Conjugate of bovine hemoglobin and human serum albumin as a candidate for blood substitute: characteristics and effects on rats. Artif Cells Blood Substit Immobil Biotechnol. 2005;33:83–99.

    Article  PubMed  CAS  Google Scholar 

  42. Spoerke N, Zink K, Cho SD, Differding J, Muller P, Karahan A, Sondeen J, Holcomb JB, Schreiber M. Lyophilized plasma for resuscitation in a swine model of severe injury. Arch Surg. 2009;144:829–34.

    Article  PubMed  CAS  Google Scholar 

  43. Knudson MM, Lee S, Erickson V, Morabito D, Derugin N, Manley GT. Tissue oxygen monitoring during hemorrhagic shock and resuscitation: a comparison of lactated Ringer’s solution, hypertonic saline dextran, and HBOC-201. J Trauma. 2003;54:242–52.

    Article  PubMed  CAS  Google Scholar 

  44. Johnson T, Arnaud F, Dong F, Philbin N, Rice J, Asher L, Arrisueno M, Warndorf M, Gurney J, McGwin G, Kaplan L, Flournoy WS, Apple FS, Pearce LB, Ahlers S, McCarron R, Freilich D. Bovine polymerized hemoglobin (hemoglobin-based oxygen carrier-201) resuscitation in three swine models of hemorrhagic shock with militarily relevant delayed evacuation—effects on histopathology and organ function. Crit Care Med. 2006;34:1464–74.

    Article  PubMed  CAS  Google Scholar 

  45. York GB, Eggers JS, Smith DL, Jenkins DH, McNeil JD, Mueller D, Josephs JD, Kerby JD. Low-volume resuscitation with a polymerized bovine hemoglobin-based oxygen-carrying solution (HBOC-201) provides adequate tissue oxygenation for survival in a porcine model of controlled hemorrhage. J Trauma. 2003;55:873–85.

    Article  PubMed  CAS  Google Scholar 

  46. Sprung J, Kindscher JD, Wahr JA, Levy JH, Monk TG, Moritz MW, O’Hara PJ. The use of bovine hemoglobin glutamer-250 (Hemopure) in surgical patients: results of a multicenter, randomized, single-blinded trial. Anesth Analg. 2002;94:799–808.

    Google Scholar 

  47. Xiao N, Wang XC, Diao YF, Liu R, Tian KL. Effect of initial fluid resuscitation on subsequent treatment in uncontrolled hemorrhagic shock in rats. Shock. 2004;21:276–80.

    Article  PubMed  Google Scholar 

  48. Li T, Zhu Y, Hu Y, Li L, Diao Y, Tang J, Liu L. Ideal permissive hypotension to resuscitate uncontrolled hemorrhagic shock and the tolerance time in rats. Anesthesiology. 2011;114:111–9.

    Article  PubMed  Google Scholar 

  49. Lu YQ, Cai XJ, Gu LH, Wang Q, Huang WD, Bao DG. Experimental study of controlled fluid resuscitation in the treatment of severe and uncontrolled hemorrhagic shock. J Trauma. 2007;63:798–804.

    Article  PubMed  Google Scholar 

  50. Shah KJ, Chiu WC, Scalea TM, Carlson DE. Detrimental effects of rapid fluid resuscitation on hepatocellular function and survival after hemorrhagic shock. Shock. 2002;18:242–7.

    Article  PubMed  Google Scholar 

  51. Talving P, Riddez L. A pilot study on early versus delayed hypertonic saline dextran resuscitation in a porcine model of near-lethal liver injury: early hemodynamic response and short-term survival. J Surg Res. 2006;136:273–9.

    Article  PubMed  CAS  Google Scholar 

  52. Garrison RN, Conn AA, Harris PD, el Zakaria R. Direct peritoneal resuscitation as adjunct to conventional resuscitation from hemorrhagic shock: a better outcome. Surgery. 2004;136:900–8.

    Article  PubMed  Google Scholar 

  53. Zakaria el R, Matheson PJ, Flessner MF, Garrison RN. Hemorrhagic shock and resuscitation-mediated tissue water distribution is normalized by adjunctive peritoneal resuscitation. J Am Coll Surg. 2008;206:970–80.

    Google Scholar 

  54. Smith JW, Garrison RN, Matheson PJ, Franklin GA, Harbrecht BG, Richardson JD. Direct peritoneal resuscitation accelerates primary abdominal wall closure after damage control surgery. J Am Coll Surg. 2010;210:658–64, 664–7.

    Google Scholar 

  55. Raddatz A, Kubulus D, Winning J, Bauer I, Pradarutti S, Wolf B, Kreuer S, Rensing H. Dobutamine improves liver function after hemorrhagic shock through induction of heme oxygenase-1. Am J Respir Crit Care Med. 2006;174:198–207.

    Article  PubMed  CAS  Google Scholar 

  56. Morales D, Madigan J, Cullinane S, Chen J, Heath M, Oz M, Oliver JA, Landry DW. Reversal by vasopressin of intractable hypotension in the late phase of hemorrhagic shock. Circulation. 1999;100:226–9.

    Article  PubMed  CAS  Google Scholar 

  57. Prengel AW, Lindner KH, Wenzel V, Tugtekin I, Anhaupl T. Splanchnic and renal blood flow after cardiopulmonary resuscitation with epinephrine and vasopressin in pigs. Resuscitation. 1998;38:19–24.

    Article  PubMed  CAS  Google Scholar 

  58. Raedler C, Voelckel WG, Wenzel V, Krismer AC, Schmittinger CA, Herff H, Mayr VD, Stadlbauer KH, Lindner KH, Konigsrainer A. Treatment of uncontrolled hemorrhagic shock after liver trauma: fatal effects of fluid resuscitation versus improved outcome after vasopressin. Anesth Analg. 2004;98:1759–66.

    Google Scholar 

  59. Voelckel WG, Raedler C, Wenzel V, Lindner KH, Krismer AC, Schmittinger CA, Herff H, Rheinberger K, Konigsrainer A. Arginine vasopressin, but not epinephrine, improves survival in uncontrolled hemorrhagic shock after liver trauma in pigs. Crit Care Med. 2003;31:1160–5.

    Article  PubMed  CAS  Google Scholar 

  60. Stadlbauer KH, Wagner-Berger HG, Raedler C, Voelckel WG, Wenzel V, Krismer AC, Klima G, Rheinberger K, Nussbaumer W, Pressmar D, Lindner KH, Konigsrainer A. Vasopressin, but not fluid resuscitation, enhances survival in a liver trauma model with uncontrolled and otherwise lethal hemorrhagic shock in pigs. Anesthesiology. 2003;98:699–704.

    Article  PubMed  CAS  Google Scholar 

  61. Li T, Fang Y, Zhu Y, Fan X, Liao Z, Chen F, Liu L. A small dose of arginine vasopressin in combination with norepinephrine is a good early treatment for uncontrolled hemorrhagic shock after hemostasis. J Surg Res. 2011;169:76–84.

    Article  PubMed  CAS  Google Scholar 

  62. McCloskey CA, Zuckerbraun BS, Gallo DJ, Vodovotz Y, Billiar TR. A role for angiotensin II in the activation of extracellular signal-regulated kinases in the liver during hemorrhagic shock. Shock. 2003;20:316–9.

    Article  PubMed  CAS  Google Scholar 

  63. Lee CJ, Subeq YM, Lee RP, Wu WT, Hsu BG. Low-dose propofol ameliorates haemorrhagic shock-induced organ damage in conscious rats. Clin Exp Pharmacol Physiol. 2008;35:766–74.

    Article  PubMed  CAS  Google Scholar 

  64. Lee CJ, Lee RP, Subeq YM, Lee CC, Peng TC, Hsu BG. Propofol protects against hemorrhagic shock-induced organ damage in conscious spontaneously hypertensive rats. Biol Res Nurs. 2009;11:152–62.

    Article  PubMed  CAS  Google Scholar 

  65. Takahashi K, Shigemori S, Nosaka S, Morikawa S, Inubushi T. The effects of halothane and isoflurane on the phosphoenergetic state of the liver duringhemorrhagic shock in rats: an in vivo 31P nuclear magnetic resonance spectroscopic study. Anesth Analg. 1997;85:347–52.

    Google Scholar 

  66. Takahashi K, Nosaka S, Morikawa S, Inubushi T. Hepatic energy metabolism during ketamine and isoflurane anaesthesia in haemorrhagic shock. Br J Anaesth. 1998;80:782–7.

    Google Scholar 

  67. Bahrami S, Benisch C, Zifko C, Jafarmadar M, Schochl H, Redl H. Xylazine-/diazepam-ketamine and isoflurane differentially affect hemodynamics and organ injury under hemorrhagic/traumatic shock and resuscitation in rats. Shock. 2011;35:573–8.

    Article  PubMed  CAS  Google Scholar 

  68. Englehart MS, Allison CE, Tieu BH, Kiraly LN, Underwood SA, Muller PJ, Differding JA, Sawai RS, Karahan A, Schreiber MA. Ketamine-based total intravenous anesthesia versus isoflurane anesthesia in a swine model of hemorrhagic shock. J Trauma. 2008;65:901–8. Discussion 908–9.

    Google Scholar 

  69. Ishida H, Kadota Y, Sameshima T, Nishiyama A, Oda T, Kanmura Y. Comparison between sevoflurane and isoflurane anesthesia in pig hepatic ischemia–reperfusion injury. J Anesth. 2002;16:44–50.

    Article  PubMed  Google Scholar 

  70. Zhang L, Luo N, Liu J, Duan Z, Du G, Cheng J, Lin H, Li Z. Emulsified isoflurane preconditioning protects against liver and lung injury in rat model of hemorrhagic shock. J Surg Res. 2010;171:783–90.

    Article  PubMed  Google Scholar 

  71. Lee CC, Lee RP, Subeq YM, Lee CJ, Chen TM, Hsu BG. Fluvastatin attenuates severe hemorrhagic shock-induced organ damage in rats. Resuscitation. 2009;80:372–8.

    Article  PubMed  CAS  Google Scholar 

  72. Relja B, Lehnert M, Seyboth K, Bormann F, Hohn C, Czerny C, Henrich D, Marzi I. Simvastatin reduces mortality and hepatic injury after hemorrhage/resuscitation in rats. Shock. 2010;34:46–54.

    PubMed  CAS  Google Scholar 

  73. Rana MW, Shapiro MJ, Ali MA, Chang YJ, Taylor WH. Deferoxamine and hespan complex as a resuscitative adjuvant in hemorrhagic shock rat model. Shock. 2002;17:339–42.

    Article  PubMed  Google Scholar 

  74. Yang FL, Subeq YM, Lee CJ, Lee RP, Peng TC, Harn HJ, Hsu BG. Rosiglitazone protects against severe hemorrhagic shock-induced organ damage in rats. Med Sci Monit. 2011;17:BR282–9.

    Article  PubMed  CAS  Google Scholar 

  75. Zingarelli B, Chima R, O’Connor M, Piraino G, Denenberg A, Hake PW. Liver apoptosis is age dependent and is reduced by activation of peroxisome proliferator-activated receptor-gamma in hemorrhagic shock. Am J Physiol Gastrointest Liver Physiol. 2010;298:G133–41.

    Article  PubMed  CAS  Google Scholar 

  76. Liu FC, Liu FW, Yu HP. Ondansetron attenuates hepatic injury via p38 MAPK-dependent pathway in a rat haemorrhagic shock model. Resuscitation. 2011;82:335–40.

    Article  PubMed  CAS  Google Scholar 

  77. Mathes AM, Kubulus D, Pradarutti S, Bentley A, Weiler J, Wolf B, Ziegeler S, Bauer I, Rensing H. Melatonin pretreatment improves liver function and hepatic perfusion after hemorrhagic shock. Shock. 2008;29:112–8.

    PubMed  CAS  Google Scholar 

  78. Yang FL, Subeq YM, Lee CJ, Lee RP, Peng TC, Hsu BG. Melatonin ameliorates hemorrhagic shock-induced organ damage in rats. J Surg Res. 2011;167:e315–21.

    Article  PubMed  CAS  Google Scholar 

  79. Kuebler JF, Yokoyama Y, Jarrar D, Toth B, Rue LW 3rd, Bland KI, Wang P, Chaudry IH. Administration of progesterone after trauma and hemorrhagic shock prevents hepatocellular injury. Arch Surg. 2003;138:727–34.

    Article  PubMed  CAS  Google Scholar 

  80. Mizushima Y, Wang P, Jarrar D, Cioffi WG, Bland KI, Chaudry IH. Estradiol administration after trauma-hemorrhage improves cardiovascular and hepatocellular functions in male animals. Ann Surg. 2000;232:673–9.

    Article  PubMed  CAS  Google Scholar 

  81. Anaya-Prado R, Toledo-Pereyra LH, Guo RF, Reuben J, Ward PA, Walsh J. The attenuation of hemorrhage-induced liver injury by exogenous nitric oxide, l-arginine, and inhibition of inducible nitric oxide synthase. J Invest Surg. 2003;16:247–61.

    PubMed  Google Scholar 

  82. Gundersen Y, Vaagenes P, Reistad T, Opstad PK. Modest protection of early hydrocortisone treatment in a rat model of volume-controlled haemorrhage. Acta Anaesthesiol Scand. 2003;47:1165–71.

    Article  PubMed  CAS  Google Scholar 

  83. Zaets SB, Xu DZ, Lu Q, Feketova E, Berezina TL, Malinina IV, Deitch EA, Olsen EH. Recombinant factor XIII mitigates hemorrhagic shock-induced organ dysfunction. J Surg Res. 2011;166:e135–42.

    Article  PubMed  CAS  Google Scholar 

  84. Roesner JP, Petzelbauer P, Koch A, Tran N, Iber T, Vagts DA, Scheeren TW, Vollmar B, Noldge-Schomburg GE, Zacharowski K. Bbeta15-42 (FX06) reduces pulmonary, myocardial, liver, and small intestine damage in a pig model of hemorrhagic shock and reperfusion. Crit Care Med. 2009;37:598–605.

    Article  PubMed  CAS  Google Scholar 

  85. Dhar A, Cherian G, Dhar G, Ray G, Sharma R, Banerjee SK. Molecular basis of protective effect by crocetin on survival and liver tissue damage following hemorrhagic shock. Mol Cell Biochem. 2005;278:139–46.

    Article  PubMed  CAS  Google Scholar 

  86. Shah KG, Jacob A, Rajan D, Wu R, Molmenti EP, Nicastro J, Coppa GF, Wang P. Resuscitation of uncontrolled traumatic hemorrhage induced by severe liver injury: the use of human adrenomedullin and adrenomedullin binding protein-1. J Trauma. 2010;69:1415–21;discussion 1421–2.

    Google Scholar 

  87. Huang YS, Liu FC, Li AH, Lau YT, Yu HP. Astringinin-mediated attenuation of the hepatic injury following trauma-hemorrhage. Chin J Physiol. 2011;54:183–9.

    PubMed  CAS  Google Scholar 

  88. van den Berg HR, Khan NA, van der Zee M, Bonthuis F. JN IJ, Dik WA, de Bruin RW, Benner R. Synthetic oligopeptides related to the [beta]-subunit of human chorionic gonadotropin attenuate inflammation and liver damage after (trauma) hemorrhagic shock and resuscitation. Shock. 2009;31:285–91.

    Article  PubMed  Google Scholar 

  89. Yu HP, Hsu JC, Hwang TL, Yen CH, Lau YT. Resveratrol attenuates hepatic injury after trauma-hemorrhage via estrogen receptor-related pathway. Shock. 2008;30:324–8.

    Article  PubMed  CAS  Google Scholar 

  90. Lin T, Chen H, Koustova E, Sailhamer EA, Li Y, Shults C, Liu B, Rhee P, Kirkpatrick J, Alam HB. Histone deacetylase as therapeutic target in a rodent model of hemorrhagic shock: effect of different resuscitation strategies on lung and liver. Surgery. 2007;141:784–94.

    Article  PubMed  Google Scholar 

  91. Liu FC, Day YJ, Liou JT, Lau YT, Yu HP. Sirtinol attenuates hepatic injury and pro-inflammatory cytokine production following trauma-hemorrhage in male Sprague-Dawley rats. Acta Anaesthesiol Scand. 2008;52:635–40.

    Article  PubMed  CAS  Google Scholar 

  92. Yang R, Gallo DJ, Baust JJ, Uchiyama T, Watkins SK, Delude RL, Fink MP. Ethyl pyruvate modulates inflammatory gene expression in mice subjected to hemorrhagic shock. Am J Physiol Gastrointest Liver Physiol. 2002;283:G212–21.

    PubMed  CAS  Google Scholar 

  93. Chai W, Wang Y, Lin JY, Sun XD, Yao LN, Yang YH, Zhao H, Jiang W, Gao CJ, Ding Q. Exogenous hydrogen sulfide protects against traumatic hemorrhagic shock via attenuation of oxidative stress. J Surg Res. 2012;176:210–9.

    Article  PubMed  CAS  Google Scholar 

  94. Kan WH, Hsieh CH, Schwacha MG, Choudhry MA, Raju R, Bland KI, Chaudry IH. Flutamide protects against trauma-hemorrhage-induced liver injury via attenuation of the inflammatory response, oxidative stress, and apopotosis. J Appl Physiol. 2008;105:595–602.

    Article  PubMed  CAS  Google Scholar 

  95. Zuckerbraun BS, McCloskey CA, Gallo D, Liu F, Ifedigbo E, Otterbein LE, Billiar TR. Carbon monoxide prevents multiple organ injury in a model of hemorrhagic shock and resuscitation. Shock. 2005;23:527–32.

    PubMed  CAS  Google Scholar 

  96. Schmidt R, Baechle T, Hoetzel A, Loop T, Humar M, Roesslein M, Geiger KK, Pannen BH. Dihydralazine treatment limits liver injury after hemorrhagic shock in rats. Crit Care Med. 2006;34:815–22

    Google Scholar 

  97. Yang R, Martin-Hawver L, Woodall C, Thomas A, Qureshi N, Morrison D, Van Way C 3rd. Administration of glutamine after hemorrhagic shock restores cellular energy, reduces cell apoptosis and damage, and increases survival. J Parenter Enter Nutr. 2007;31:94–100

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iosifina I. Karmaniolou.

About this article

Cite this article

Karmaniolou, I.I., Theodoraki, K.A., Orfanos, N.F. et al. Resuscitation after hemorrhagic shock: the effect on the liver—a review of experimental data. J Anesth 27, 447–460 (2013). https://doi.org/10.1007/s00540-012-1543-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-012-1543-y

Keywords

Navigation