Skip to main content

Advertisement

Log in

Lidocaine depolarizes the mitochondrial membrane potential by intracellular alkalization in rat dorsal root ganglion neurons

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

The mitochondrial membrane potential (ΔΨm) is an important factor for apoptosis, and it is produced by the proton electrochemical gradient (ΔµH+). Therefore, the intracellular proton concentration (pHin) is an important factor for modifying the ΔΨm. However, the effects of lidocaine on pHin are unclear. To investigate mitochondrial responses to lidocaine, therefore, we simultaneously measured pHin with ΔΨm, flavin adenine dinucleotide (FAD), and reduced form of nicotinamide adenine dinucleotide (NADH) fluorescence, and calculated the FAD/NADH ratio (redox ratio), the superoxide production in mitochondria.

Methods

Morphological change and early apoptosis were observed by annexin-V FITC staining under fluorescent microscope. The ratiometric fluorescent probe JC-1 and HPTS were used for the simultaneous measurements of ΔΨm with pHin in rat dorsal root ganglion (DRG) neurons. FAD and NADH autofluorescence were simultaneously measured, and the FAD/NADH fluorescence ratio (redox ratio) was calculated. The superoxide was measured by mitosox-red fluorescent probe for mitochondrial superoxide. Lidocaine was evaluated at 1, 5, and 10 mM.

Results

Morphological change and early apoptosis were observed after 10 mM lidocaine administration. Lidocaine depolarized ΔΨm with increased pHin in a dose-dependent manner. In low-pH saline (pH 6), in the presence of both the weak acids (acetate and propionate), lidocaine failed to depolarize ΔΨm and increase pHin. On the other hand, lidocaine decreased the redox ratio in the cell and increased the levels of superoxide in a dose-dependent manner.

Conclusion

These results demonstrated that lidocaine depolarizes ΔΨm by intracellular alkalization. These results may indicate one of the mechanisms responsible for lidocaine-induced neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sakura S, Kirihara Y, Muguruma T, Kishimoto T, Saito Y. The comparative neurotoxicity of intrathecal lidocaine and bupivacaine in rats. Anesth Analg. 2005;101:541–7.

    Article  PubMed  CAS  Google Scholar 

  2. Takenami T, Yagishita S, Murase S, Hiruma H, Kawakami T, Hoka S. Neurotoxicity of intrathecally administered bupivacaine involves the posterior roots/posterior white matter and is milder than lidocaine in rats. Reg Anesth Pain Med. 2005;30:464–72.

    PubMed  CAS  Google Scholar 

  3. Kasaba T, Onizuka S, Takasaki M. Procaine and mepivacaine have less toxicity in vitro than other clinically used local anesthetics. Anesth Analg. 2003;97:85–90.

    Article  PubMed  CAS  Google Scholar 

  4. Werdehausen R, Braun S, Essmann F, Schulze-Osthoff K, Walczak H, Lipfert P, Stevens MF. Lidocaine induces apoptosis via the mitochondrial pathway independently of death receptor signaling. Anesthesiology. 2007;107:136–43.

    Article  PubMed  CAS  Google Scholar 

  5. Johnson ME, Uhl CB, Spittler KH, Wang H, Gores GJ. Mitochondrial injury and caspase activation by the local anesthetic lidocaine. Anesthesiology. 2004;101:1184–94.

    Article  PubMed  CAS  Google Scholar 

  6. Tembe V, Henderson BR. BARD1 translocation to mitochondria correlates with Bax oligomerization, loss of mitochondrial membrane potential, and apoptosis. J Biol Chem. 2007;282:20513–22.

    Article  PubMed  CAS  Google Scholar 

  7. McGill A, Frank A, Emmett N, Turnbull DM, Birch-Machin MA, Reynolds NJ. The anti-psoriatic drug anthralin accumulates in keratinocyte mitochondria, dissipates mitochondrial membrane potential, and induces apoptosis through a pathway dependent on respiratory competent mitochondria. FASEB J. 2005;19:1012–4.

    PubMed  CAS  Google Scholar 

  8. Andersson BS, Aw TY, Jones DP. Mitochondrial transmembrane potential and pH gradient during anoxia. Am J Physiol. 1987;252:349–55.

    Google Scholar 

  9. Kauppinen R. Proton electrochemical potential of the inner mitochondrial membrane in isolated perfused rat hearts, as measured by exogenous probes. Biochim Biophys Acta. 1983;725:131–7.

    Article  PubMed  CAS  Google Scholar 

  10. Broekemeier KM, Klocek CK, Pfeiffer DR. Proton selective substrate of the mitochondrial permeability transition pore: regulation by the redox state of the electron transport chain. Biochemistry. 1998;37:13059–65.

    Article  PubMed  CAS  Google Scholar 

  11. Marzulli D, La Piana G, Cafagno L, Fransvea E, Lofrumento NE. Proton translocation linked to the activity of the bi-trans-membrane electron transport chain. Arch Biochem Biophys. 1995;319:36–48.

    Article  PubMed  CAS  Google Scholar 

  12. Yokota K, Tatebayashi H, Matsuo T, Shoge T, Motomura H, Matsuno T, Fukuda A, Tashiro N. The effects of neuroleptics on the GABA-induced Cl current in rat dorsal root ganglion neurons: differences between some neuroleptics. Br J Pharmacol. 2002;135:1547–55.

    Article  PubMed  CAS  Google Scholar 

  13. Liu T, Zhu W, Yang X, Chen L, Yang R, Hua Z, Li G. Detection of apoptosis based on the interaction between annexin V and phosphatidylserine. Anal Chem. 2009;81:2410–3.

    Article  PubMed  CAS  Google Scholar 

  14. Zhang G, Gurtu V, Kain SR, Yan G. Early detection of apoptosis using a fluorescent conjugate of annexin V. Biotechniques. 1997;23:525–31.

    PubMed  CAS  Google Scholar 

  15. Smiley ST, Reers M, Mottola-Hartshorn C, Lin M, Chen A, Smith TW, Steele GD Jr, Chen LB. Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc Natl Acad Sci USA. 1991;88:3671–5.

    Article  PubMed  CAS  Google Scholar 

  16. Cossarizza A, Baccarani-Contri M, Kalashnikova G, Franceschi C. A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochem Biophys Res Commun. 1993;197:40–5.

    Article  PubMed  CAS  Google Scholar 

  17. Willoughby D, Thomas RC, Schwiening CJ. Comparison of simultaneous pH measurements made with 8-hydroxypyrene-1,3,6-trisulphonic acid (HPTS) and pH-sensitive microelectrodes in snail neurons. Pflugers Arch. 1998;436:615–22.

    Article  PubMed  CAS  Google Scholar 

  18. Overly CC, Lee KD, Berthiaume E, Hollenbeck PJ. Quantitative measurement of intraorganelle pH in the endosomal–lysosomal pathway in neurons by using ratiometric imaging with pyranine. Proc Natl Acad Sci USA. 1995;92:3156–60.

    Article  PubMed  CAS  Google Scholar 

  19. Mokrý M, Gál P, Vidinský B, Kusnír J, Dubayová K, Mozes S, Sabo J. In vivo monitoring the changes of interstitial pH and FAD/NADH ratio by fluorescence spectroscopy in healing skin wounds. Photochem Photobiol. 2006;82:793–7.

    Article  PubMed  Google Scholar 

  20. Mukhopadhyay P, Rajesh M, Yoshihiro K, Haskó G, Pacher P. Simple quantitative detection of mitochondrial superoxide production in live cells. Biochem Biophys Res Commun. 2007;358:203–8.

    Article  PubMed  CAS  Google Scholar 

  21. Jiang J, Serinkan BF, Tyurina YY, Borisenko GG, Mi Z, Robbins PD, Schroit AJ, Kagan VE. Peroxidation and externalization of phosphatidylserine associated with release of cytochrome c from mitochondria. Free Radic Biol Med. 2003;35:814–25.

    Article  PubMed  CAS  Google Scholar 

  22. Reutelingsperger CP, van Heerde WL. Annexin V the regulator of phosphatidylserine-catalyzed inflammation and coagulation during apoptosis. Cell Mol Life Sci. 1997;53:527–32.

    Article  PubMed  CAS  Google Scholar 

  23. Van Engeland M, Nieland LJ, Ramaekers FC, Schutte B, Reutelingsperger CP. Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry. 1998;31:1–9.

    Article  PubMed  Google Scholar 

  24. Sanchez V, Arthur GR, Strichartz GR. Fundamental properties of local anesthetics I. The dependence of lidocaine’s ionization and octanol:buffer partitioning on solvent and temperature. Anesth Analg. 1987;66:159–65.

    Article  PubMed  CAS  Google Scholar 

  25. De Jong RH. Local anesthetic pharmacology. In: Brown DL, editor. Regional anesthesia and analgesia. Philadelphia: Saunders; 1996. p. 125–42.

    Google Scholar 

  26. Wilkie MP. Mechanisms of ammonia excretion across fish gills. Comp Biochem Physiol Part A Physiol. 1997;118:39–50.

    Article  Google Scholar 

  27. John ET. The pharmacology of local anesthetics. Anesthesiol Clin N Am. 2000;18:217–33.

    Article  Google Scholar 

  28. Mollica MP, Iossa S, Liverini G, Soboll S. Steady state changes in mitochondrial electrical potential and proton gradient in perfused liver from rats fed a high fat diet. Mol Cell Biochem. 1998;178:213–7.

    Article  PubMed  CAS  Google Scholar 

  29. Bernardi P, Vassanelli S, Veronese P, Colonna R, Szabó I, Zoratti M. Modulation of the mitochondrial permeability transition pore. Effect of protons and divalent cations. J Biol Chem. 1992;267:2934–9.

    PubMed  CAS  Google Scholar 

  30. Bernardi P. Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore by the proton electrochemical gradient. Evidence that the pore can be opened by membrane depolarization. J Biol Chem. 1992;267:8834–9.

    PubMed  CAS  Google Scholar 

  31. Khaled AR, Reynolds DA, Young HA, Thompson CB, Muegge K, Durum SK. Interleukin-3 withdrawal induces an early increase in mitochondrial membrane potential unrelated to the Bcl-2 family. Roles of intracellular pH, ADP transport, and F(0)F(1)-ATPase. J Biol Chem. 2001;276:6453–62.

    Article  PubMed  CAS  Google Scholar 

  32. Adam-Vizi V. Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources. Antioxid Redox Signal. 2005;7:1140–9.

    Article  PubMed  CAS  Google Scholar 

  33. Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ. Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem. 2003;278:36027–31.

    Article  PubMed  CAS  Google Scholar 

  34. Fujimoto S, Nabe K, Takehiro M, Shimodahira M, Kajikawa M, Takeda T, Mukai E, Inagaki N, Seino Y. Impaired metabolism-secretion coupling in pancreatic beta-cells: role of determinants of mitochondrial ATP production. Diabetes Res Clin Pract. 2007;77:2–10.

    Article  Google Scholar 

  35. Gutman M, Singer TP, Casida JE. Role of multiple binding sites in the inhibition of NADH oxidase by piericidin and rotenone. Biochem Biophys Res Commun. 1969;37:615–22.

    Article  PubMed  CAS  Google Scholar 

  36. Okun JG, Lümmen P, Brandt U. Three classes of inhibitors share a common binding domain in mitochondrial complex I (NADH:ubiquinone oxidoreductase). J Biol Chem. 1999;274:2625–30.

    Article  PubMed  CAS  Google Scholar 

  37. Irwin W, Fontaine E, Agnolucci L, Penzo D, Betto R, Bortolotto S, Reggiani C, Salviati G, Bernardi P. Bupivacaine myotoxicity is mediated by mitochondria. J Biol Chem. 2002;277:12221–7.

    Article  PubMed  CAS  Google Scholar 

  38. Zhuang J, Dinsdale D, Cohen GM. Apoptosis, in human monocytic THP.1 cells, results in the release of cytochrome c from mitochondria prior to their ultracondensation, formation of outer membrane discontinuities and reduction in inner membrane potential. Cell Death Differ. 1998;5:953–62.

    Article  PubMed  CAS  Google Scholar 

  39. Chen T, Wang J, Xing D, Chen WR. Spatio-temporal dynamic analysis of bid activation and apoptosis induced by alkaline condition in human lung adenocarcinoma cell. Cell Physiol Biochem. 2007;20:569–78.

    Article  PubMed  CAS  Google Scholar 

  40. Suzuki H, Yanaka A, Shibahara T, Matsui H, Nakahara A, Tanaka N, Muto H, Momoi T, Uchiyama Y. Ammonia-induced apoptosis is accelerated at higher pH in gastric surface mucous cells. Am J Physiol Gastrointest Liver Physiol. 2002;283:986–95.

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid (No. 12770828) for Scientific Research (A) from The Ministry of Education, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin Onizuka.

About this article

Cite this article

Onizuka, S., Yonaha, T., Tamura, R. et al. Lidocaine depolarizes the mitochondrial membrane potential by intracellular alkalization in rat dorsal root ganglion neurons. J Anesth 25, 229–239 (2011). https://doi.org/10.1007/s00540-010-1079-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-010-1079-y

Keywords

Navigation