Skip to main content
Log in

Systemic clonidine activates neurons of the dorsal horn, but not the locus ceruleus (A6) or the A7 area, after a formalin test: the importance of the dorsal horn in the antinociceptive effects of clonidine

  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

In order to clarify the principal site for the antinociceptive effects of clonidine, we investigated the nociceptive behavior and neural activity (c-fos staining) of the dorsal horn (DH), locus ceruleus (LC), and A7 area after a formalin test in normal saline- or clonidine-injected rats.

Methods

Thirty-six rats were divided into 6 groups as follows: formalin test + saline (FS); formalin test + clonidine (1 mg·kg−1) (FC1); formalin test + clonidine (10 mg·kg−1) (FC10); saline (S); clonidine (1 mg·kg−1) (C1); and clonidine (10 mg·kg−1) (C10). Normal saline or clonidine was injected intraperitoneally 30 min before the formalin test. In the FS, FC1, and FC10 groups, 10% formalin was injected into the left rear paw. All rats were killed 2.5 h after normal saline or clonidine injection. Sections of the lumbar spinal cord, LC, and A7 area were processed for c-fos immunohistochemistry using the avidin–biotin peroxidase complex method. To evaluate the sedative effects of clonidine, we investigated the loss of righting reflex (LORR) for 90 min in 6 other rats as follows: clonidine (1 mg·kg−1) (n = 3) and clonidine (10 mg·kg−1) (n = 3).

Results

The FC10 group showed fewer nociceptive behaviors and higher c-fos expression in the DH, but not in the A7 area, as well as lower c-fos expression in the LC than rats in the FS and FC1 groups (P < 0.05). The C10 group showed lower c-fos expression in the LC than that of rats in the S and C1 groups (P < 0.05). No rats exhibited LORR.

Conclusion

The antinociceptive effects of clonidine might be mediated primarily by neural activity in the DH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. JG Förster PH Rosenberg (2004) ArticleTitleSmall dose of clonidine mixed with low-dose ropivacaine and fentanyl for epidural analgesia after total knee arthroplasty Br J Anaesth 93 670–677 Occurrence Handle15377579 Occurrence Handle10.1093/bja/aeh259

    Article  PubMed  Google Scholar 

  2. S Strebel JA Gurzeler MC Schneider A Aeschbach CH Kindler (2004) ArticleTitleSmall-dose intrathecal clonidine and isobaric bupivacaine for orthopedic surgery: a dose–response study Anesth Analg 99 1231–1238 Occurrence Handle15385382 Occurrence Handle1:CAS:528:DC%2BD2cXnslOmu70%3D Occurrence Handle10.1213/01.ANE.0000133580.54026.65

    Article  PubMed  CAS  Google Scholar 

  3. JC Eisenach DD Hood R Curry (1998) ArticleTitleIntrathecal, but not intravenous, clonidine reduces experimental thermal or capsaicin-induced pain and hyperalgesia in normal volunteers Anesth Analg 87 591–596 Occurrence Handle9728835 Occurrence Handle1:CAS:528:DyaK1cXmtVahs7s%3D Occurrence Handle10.1097/00000539-199809000-00018

    Article  PubMed  CAS  Google Scholar 

  4. TZ Guo JY Jiang AE Buttermann M Maze (1996) ArticleTitleDexmedetomidine injection into the locus ceruleus produces antinociception Anesthesiology 84 873–881 Occurrence Handle8638842 Occurrence Handle1:CAS:528:DyaK28Xis1Wntbg%3D Occurrence Handle10.1097/00000542-199604000-00015

    Article  PubMed  CAS  Google Scholar 

  5. J Sawynok A Reid (1986) ArticleTitleRole of ascending and descending noradrenergic pathways in the antinociceptive effect of baclofen and clonidine Brain Res 386 341–350 Occurrence Handle3096496 Occurrence Handle1:CAS:528:DyaL2sXktlyhtA%3D%3D Occurrence Handle10.1016/0006-8993(86)90171-X

    Article  PubMed  CAS  Google Scholar 

  6. D Bajic HK Proudfit (1999) ArticleTitleProjections of neurons in the periaqueductal gray to pontine and medullary catecholamine cell groups involved in the modulation of nociception J Comp Neurol 405 359–379 Occurrence Handle10076931 Occurrence Handle1:STN:280:DyaK1M7nsVGnuw%3D%3D Occurrence Handle10.1002/(SICI)1096-9861(19990315)405:3<359::AID-CNE6>3.0.CO;2-W

    Article  PubMed  CAS  Google Scholar 

  7. D Dubuisson SG Dennis (1977) ArticleTitleThe formalin test: a quantitative study of the analgesia effects of morphine, meperidine, and brain-stem stimulation in rats and cats Pain 4 161–174 Occurrence Handle564014 Occurrence Handle1:CAS:528:DyaE1cXhsVGrt7s%3D Occurrence Handle10.1016/0304-3959(77)90130-0

    Article  PubMed  CAS  Google Scholar 

  8. SM Hsu L Raine H Fanger (1981) ArticleTitleUse of avidin–biotin–peroxidase complex (ABC) in immnoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures J Histochem Cytochem 29 577–580 Occurrence Handle6166661 Occurrence Handle1:STN:280:Bi6B2c%2FmvVw%3D

    PubMed  CAS  Google Scholar 

  9. JA Harris (1998) ArticleTitleUsing c-fos as a neural marker of pain Brain Res Bull 45 1–8 Occurrence Handle9434195 Occurrence Handle1:CAS:528:DyaK1cXhvFOgsg%3D%3D Occurrence Handle10.1016/S0361-9230(97)00277-3

    Article  PubMed  CAS  Google Scholar 

  10. TC Spaulding JJ Venafro MG Ma S Fielding (1979) ArticleTitleThe dissociation of the antinociceptive effect of clonidine from supraspinal structures Neuropharmacology 18 103–105 Occurrence Handle418952 Occurrence Handle1:CAS:528:DyaE1MXksV2gur4%3D Occurrence Handle10.1016/0028-3908(79)90015-7

    Article  PubMed  CAS  Google Scholar 

  11. K Murata I Nakagawa Y Kumeta LM Kitahata JG Collins (1989) ArticleTitleIntrathecal clonidine suppresses noxiously evoked activity of spinal-wide dynamic range neurons in cats Anesth Analg 69 185–191 Occurrence Handle2548415 Occurrence Handle1:CAS:528:DyaK3MXhsFOjsr0%3D Occurrence Handle10.1213/00000539-198908000-00008

    Article  PubMed  CAS  Google Scholar 

  12. T Hashimoto M Maze Y Ohashi M Fujinaga (2001) ArticleTitleNitrous oxide activates GABAergic neurons in the spinal cord in Fischer rats Anesthesiology 95 463–469 Occurrence Handle11506121 Occurrence Handle1:CAS:528:DC%2BD3MXmtlersro%3D Occurrence Handle10.1097/00000542-200108000-00031

    Article  PubMed  CAS  Google Scholar 

  13. KM Zhang XM Wang AM Peterson WY Chen S Mokha (1998) ArticleTitleα2-adrenoceptors modulate NMDA-evoked responses of neurons in superficial and deeper dorsal horn of the medulla J Neurophysiol 80 2210–2214 Occurrence Handle9772273 Occurrence Handle1:CAS:528:DyaK1cXntVCksrk%3D

    PubMed  CAS  Google Scholar 

  14. ESL Faber JP Chambers RH Evans (1998) ArticleTitleDepression of NMDA receptor-mediated synaptic transmission by four α2-adrenoceptor agonists on the in vitro rat spinal cord preparation Br J Pharmacol 124 507–512 Occurrence Handle9647475 Occurrence Handle1:CAS:528:DyaK1cXjslSisrY%3D Occurrence Handle10.1038/sj.bjp.0701873

    Article  PubMed  CAS  Google Scholar 

  15. G Aston-Jones MT Shipley R Grzanna (1994) The locus coeruleus, A5 and A7 noradrenergic cell groups G Paxinos (Eds) The rat nervous system Academic Press Sydney 183–213

    Google Scholar 

  16. CW Berridge ME Page RJ Valentino SL Foote (1993) ArticleTitleEffects of locus coeruleus inactivation on electroencephalographic activity in neocortex and hippocampus Neuroscience 55 381–393 Occurrence Handle8104319 Occurrence Handle1:STN:280:ByyA1M%2FntlI%3D Occurrence Handle10.1016/0306-4522(93)90507-C

    Article  PubMed  CAS  Google Scholar 

  17. A Pertovaara MM Hämäläinen T Kauppila E Mecke S Carlson (1994) ArticleTitleDissociation of the α2-adrenergic antinociception from sedation following microinjection of medetomidine into the locus coeruleus in rats Pain 57 207–215 Occurrence Handle7916451 Occurrence Handle1:CAS:528:DyaK2cXmt1Wltbw%3D Occurrence Handle10.1016/0304-3959(94)90225-9

    Article  PubMed  CAS  Google Scholar 

  18. C Correa-Sales BC Rabin M Maze (1992) ArticleTitleA hypnotic response to dexmedetomidine, an α2-agonist, is mediated in the locus coeruleus in rats Anesthesiology 76 948–952 Occurrence Handle1350889 Occurrence Handle1:CAS:528:DyaK38XksVSgsb8%3D Occurrence Handle10.1097/00000542-199206000-00013

    Article  PubMed  CAS  Google Scholar 

  19. GB De Sarro C Ascioti F Froio V Libri G Nistico (1987) ArticleTitleEvidence that locus coeruleus is the site where clonidine and drugs acting at α1- and α2-adrenoceptors affect sleep and arousal mechanisms Br J Pharmacol 90 675–685 Occurrence Handle2884006 Occurrence Handle1:CAS:528:DyaL2sXktFOltr4%3D

    PubMed  CAS  Google Scholar 

  20. GK Aghajanian CP VanderMaelen (1982) ArticleTitleα2-adrenoceptor-mediated hyperpolarization of locus coeruleus neurons: intracellular studies in vivo Science 215 1394–1396 Occurrence Handle6278591 Occurrence Handle1:CAS:528:DyaL38XhsFGnsrs%3D Occurrence Handle10.1126/science.6278591

    Article  PubMed  CAS  Google Scholar 

  21. DC Yeomans FM Clark JA Paice HK Proudfit (1992) ArticleTitleAntinociception induced by electrical stimulation of spinally projecting noradrenergic neurons in the A7 catecholamine cell group of the rat Pain 48 449–461 Occurrence Handle1594267 Occurrence Handle1:STN:280:By2B2sfotVY%3D Occurrence Handle10.1016/0304-3959(92)90098-V

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Fukuda, T., Furukawa, H., Hisano, S. et al. Systemic clonidine activates neurons of the dorsal horn, but not the locus ceruleus (A6) or the A7 area, after a formalin test: the importance of the dorsal horn in the antinociceptive effects of clonidine. J Anesth 20, 279–283 (2006). https://doi.org/10.1007/s00540-006-0426-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-006-0426-5

Key words

Navigation