Skip to main content

Advertisement

Log in

Effects of microinjection of histamine into the anterior cingulate cortex on pain-related behaviors induced by formalin in rats

  • Original research article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

The present study was aimed to investigate the effects of microinjection of histamine and its H1, H2 and H3 receptor antagonists, mepyramine, ranitidine and thioperamide, respectively, into the anterior cingulate cortex (ACC) on pain-related behaviors induced by formalin in rats.

Methods

Two stainless steel guide canulas were bilaterally implanted into the ACC of anaesthetized rats. For induction of pain, intraplantar (ipl) injection of a 2.5% formalin solution was performed. The duration of paw licking/biting and the number of paw flinching were recorded in 5 min blocks for 60 min. Locomotor activity was assessed using an open-field test.

Results

Formalin produced a marked biphasic pattern of pain. Histamine reduced the second phases of paw licking/biting and flinching. Mepyramine (2 μg/side) prevented the suppressive effect of histamine (1 μg/side) on second phase of pain, but at a dose of 8 μg/side it did not inhibit the suppressive effects of 4 μg/side of histamine. Ranitidine at doses of 2 and 8 μg/side prevented histamine (1 and 4 μg/side)-induced antinociception. Thioperamide not only suppressed the second phases of pain, but also increased the suppressive effect of histamine. Naloxone prevented suppressive effects of histamine and thioperamide on pain. Mepyramine (8 μg/side) suppressed locomotor activity.

Conclusion

The results of the present study showed pain suppressing effects for histamine. Histamine H2 and H3, and to a lesser extent, H1 receptors might be involved in histamine-induced antinociception. Opioid receptors might be involved in suppressive effects of histamine and thioperamide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACC:

anterior cingulate cortex

TMN:

tuberomammillary nucleus

DH:

dorsal hippocampus

DG:

dentate gyrus

PSC:

primary somatosensory cortex

PAG:

periaqueductal gray

RN:

raphe nucleus

LC:

locus coeruleus

CABA:

gama-amino butyric acid

CCK:

cholecystokinin

icv :

intracerebroventricular

sc :

subcutaneous

ip :

intraperitoneal

ipl :

intraplantar

References

  1. Hough LB, Rice FL. H3 receptors and pain modulation: peripheral, spinal and brain interactions. J Pharmacol Exp Ther 2011;336(1):30–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schneider EH, Neumann D, Seifert R. Modulation of behavior by histaminergic system: lessons from H1R and H2R-deficeint mice. Neurosci Biobehav Rev 2014;42:252–66.

    Article  CAS  PubMed  Google Scholar 

  3. Schneider EH, Neumann D, Seifert R. Modulation of behavior by histaminergic system: lessons from HDC-, H3R- and H4R-deficient mice. Neurosci Biobehav Rev 2014;47C:101–21.

  4. Thoburn KK, Hough LB, Nalwalk JW, Mischler SA. Histamine-induced modulation of nociceptive responses. Pain 1994;58(1):29–37.

    Article  CAS  PubMed  Google Scholar 

  5. Wei H, Jin CV, Viisanen H, You HJ, Pertovaara A. Histamine in the locus coeruleus promotes descending noradrenergic inhibition of neuropathic hypersensitivity. Pharmacol Res 2014;90:58–66.

    Article  CAS  PubMed  Google Scholar 

  6. Erfanparast A, Tamaddonfard E, Farshid AA, Khalilzadeh E. Effect of microinjection of histamine into the dorsal hippocampus on the orofacial formalin-induced pain in rats. Eur J Pharmacol 2010;627(1–3):119–23.

    Article  CAS  PubMed  Google Scholar 

  7. Khalilzadeh E, Tamaddonfard E, Farshid AA, Erfanparast A. Microinjection of histamine into the dentate gyrus produces antinociception in the formalin test in rats. Pharmacol Biochem Behav 2010;97(2):325–32.

    Article  CAS  PubMed  Google Scholar 

  8. Tamaddonfard E, Hamzeh-Gooshchi N. Effects of administration of histamine and its H1: H2 and H3 receptor antagonists into the primary somatosensory cortex on inflammatory pain in rats. Iran J Basic Med Sci 2014;17(1):55–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Tamaddonfard E, Erfanparast A, Farshid AA, Khalilzadeh E. Interaction between histamine and morphine at the level of the hippocampus in the formalin-induced orofacial pain in rats. Pharmacol Rep 2011;63(2):423–32.

    Article  CAS  PubMed  Google Scholar 

  10. Shenhav A, Botivinick MM, Cohen JD. The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron 2013;79(2):217–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fuchs PN, Peng YB, Boyette-Davis JA, Uhelski ML. The anterior cingulate cortex and pain processing. Front Integr Neurosci 2014;8:35. https://doi.org/10.3389/frint.2014.00035.

  12. Quinetro GC. Advances in cortical modulation of pain. J Pain Res 2013;6:713–25.

    Article  Google Scholar 

  13. Xie YF, Huo FQ, Tang JS. Cerebral cortex modulation of pain. Acta Pharmacol Sin 2009;30(1):31–41.

    Article  CAS  PubMed  Google Scholar 

  14. Hutchison WD, Davis KD, Lozano AM, Tasker RR, Dostrovsky JO. Pain-related neurons in the human cingulate cortex. Nat Neurosci 1999;2(5):403–5.

    Article  CAS  PubMed  Google Scholar 

  15. Yamamura H, Iwata K, Tsuboi Y, Toda K, Kitajima K, Shimizu N, et al. Morphological and electrophysiological properties of ACCx nociceptive neurons in rats. Brain Res 1996;735(1):83–92.

    Article  CAS  PubMed  Google Scholar 

  16. Zhou L, Huang J, Gao J, Zhang G, Jiang J. NMDA and AMPA receptors in the anterior cingulated cortex mediates visceral pain in visceral hypersensitivity rats. Cell Immunol 2014;287(2):86–90.

    Article  CAS  PubMed  Google Scholar 

  17. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 6th ed. New York, USA: Elsevier; 2007.

    Google Scholar 

  18. Dang YH, Xing B, Zhao Y, Zhao XY, Huo FQ, Tang JS, et al. The role of dopamine receptors in ventrolateral orbital cortex-evoked antinociception in a rat formalin test model. Eur J Pharmacol 2011;657(1–3):97–103.

    Article  CAS  PubMed  Google Scholar 

  19. Porro CA, Spatial Cavazzuti M. temporal aspects of spinal cord and brainstem activation in the formalin pain model. Prog Neurobiol 1993;41(5):565–607.

    Article  CAS  PubMed  Google Scholar 

  20. Porro CA, Cavazzuti M, Lui F, Giuliani D, Pellegrini M, Baraldi P. Independent time courses of supraspinal nociceptive activity and spinally mediated behavior during tonic pain. Pain 2003;104(1–2):291–301.

    Article  PubMed  Google Scholar 

  21. Lee H. Effects of co-administration of intrathecal nociceptin/orphanin FQ and opioid antagonists on formalin-induced pain in rats. Yonsei Med J 2013;54(3):763–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Capone F, Aloisi AM. Refinement of pain evaluation techniques. Ann Ist Super Sanita 2004;40(2):223–9.

    PubMed  Google Scholar 

  23. Markowska A, Lukaszewska I. Open-field behavior in rats with frontomedial cortical: neostratal or hippocampal lesions. Acta Neurobiol Exp 1981;41(4):197–210.

    CAS  Google Scholar 

  24. Abbott FV, Franklin KB, Westbrook RF. The formalin test: scoring properties of the first and second phases of the pain response in rats. Pain 1995;60(1):91–102.

    Article  CAS  PubMed  Google Scholar 

  25. Donahue RR, LaGraize SC, Fuchs PN. Electrolytic lesion of the anterior cingulate cortex decreases inflammatory, but not neuropathic nociceptive behaviour in rats. Brain Res 2001;897(1–2):131–8.

    Article  CAS  PubMed  Google Scholar 

  26. Mizoguchi H, Komatsu T, Iwata Y, Watanabe C, Watanabe H, Orito T, et al. Partial involvement of NMDA receptors and glial cells in the nociceptive behaviors induced by intrathecally administered histamine. Neurosci Lett 2011;495(2):83–7.

    Article  CAS  PubMed  Google Scholar 

  27. Ma JH, Xiao TH, Chang CW, Gao L, Wang XL, Gao GD, et al. Activation of anterior cingulate cortex produces inhibitory effects on noxious mechanical and electrical stimuli-evoked responses in rat spinal WDA neurons. Eur J Pain 2011;15(9):895–9.

    Article  PubMed  Google Scholar 

  28. Senapati AK, Lagraize SC, Huntington PJ, Wilson HD, Fuchs PN, Peng YB. Electrical stimulation of the anterior cingulate cortex reduces responses of rat dorsal horn neurons to mechanical stimuli. J Neurophysiol 2005;94(1):845–51.

    Article  PubMed  Google Scholar 

  29. Huang J, Chang JY, Woodward DJ, Baccala LA, Han JS, Wang JY, et al. Dynamic neuronal responses in cortical and thalamic areas during different phases of formalin test in rats. Exp Neurol 2008;200(1):124–34.

    Article  Google Scholar 

  30. Huang L, Adachi N, Nagaro T, Liu K, Arai T. Histaminergic involvement in neuropathic pain produced by partial ligation of the sciatic nerve in rats. Reg Anesth Pain Med 2007;32(2):124–9.

    Article  CAS  PubMed  Google Scholar 

  31. Tamaddonfard E, Khalilzadeh E, Hamzeh-Gooshchi N, Seiednejad-Yamchi S. Central effect of histamine in a rat model of acute trigeminal pain. Pharmacol Rep 2008;60(2):219–24.

    CAS  PubMed  Google Scholar 

  32. McGaraughty S, Chu KL, Cowart MD, Brioni JD. Antagonism of supraspinal histamine H3 receptors modulates spinal neuronal activity in neuropathic rats. J Pharmacol Exp Ther 2012;343(1):13–20.

    Article  CAS  PubMed  Google Scholar 

  33. Tagawa M, Kano M, Okamura N, Higuchi M, Matsuda M, Mizuki Y, et al. Neuroimaging of histamine H1-receptor occupancy in human brain by positron emission tomography (PET): a comparative study of ebastine, a second-generation antihistaminic, and (+)-chlorpheniramine, a classical antihistamine. Br J Clin Pharmacol 2001;52(5):501–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pilot C, Heron A, Cochios V, Tardivel-Lacombe J, Lignea U, Schwartz JC, et al. A detailed mapping of the histamine H3 receptor and its gene transcripts in rat brain. Neuroscience 2002;114(1):173–93.

    Article  Google Scholar 

  35. Haas HL, Sergeeva OA, Selbach O. Histamine in the nervous system. Physiol Rev 2008;88(3):1183–241.

    Article  CAS  PubMed  Google Scholar 

  36. Welch MJ, Meltzer EO, Simons FE. H1-antihistamines and the central nervous system. Clin Allergy Immunol 2002;17:337–88.

    CAS  PubMed  Google Scholar 

  37. Trescot AM, Datta S, Lee M, Hansen H. Opioid pharmacology. Pain Physician 2008;11(2 Suppl.):S133–53.

    PubMed  Google Scholar 

  38. Yoshimoto R, Kanatani A, Tokita S. Distinctive role of central histamine H3 receptor in various orexigenic pathways. Eur J Pharmacol 2008;579(1–3):229–32.

    Article  CAS  PubMed  Google Scholar 

  39. Vogt LJ, Sim-Selley LJ, Childers SR, Wiley RG, Vogt BA. Colocalization of muopioid receptors and activated G-proteins in rat cingulate cortex. J Pharmacol Exp Ther 2001;299(3):840–8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasrin Hamzeh-Gooshchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamzeh-Gooshchi, N., Tamaddonfard, E. & Farshid, A. Effects of microinjection of histamine into the anterior cingulate cortex on pain-related behaviors induced by formalin in rats. Pharmacol. Rep 67, 593–599 (2015). https://doi.org/10.1016/j.pharep.2014.12.019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2014.12.019

Keywords

Navigation