Skip to main content

Advertisement

Log in

The impact of PNPLA3 and JAZF1 on hepatocellular carcinoma in non-viral hepatitis patients with type 2 diabetes mellitus

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

An Editorial to this article was published on 31 October 2015

Abstract

Background

Type 2 diabetes mellitus (T2DM) is an established independent risk factor for hepatocellular carcinoma (HCC). T2DM is associated with non-alcoholic steatohepatitis (NASH), which is a major cause of non-HBV and non-HCV-related HCC; nevertheless, it has been difficult to identify those patients with T2DM who have a high risk of developing HCC. The aim of this study was to identify genetic determinants that predispose T2DM patients to HCC by genotyping T2DM susceptibility loci and PNPLA3.

Methods

We recruited 389 patients with T2DM who satisfied the following three criteria: negative for HBs-Ag and anti-HCV Ab, alcohol intake <60 g/day, and history of T2DM >10 years. These patients were divided into two groups: T2DM patients with HCC (DM–HCC, n = 59) or those without HCC (DM–non-HCC, n = 330). We genotyped 51 single-nucleotide polymorphisms (SNPs) previously reported as T2DM or NASH susceptibility loci (PNPLA3) compared between the DM-HCC and DM-non-HCC groups with regard to allele frequencies at each SNP.

Results

The SNP rs738409 located in PNPLA3 was the greatest risk factor associated with HCC. The frequency of the PNPLA3 G allele was significantly higher among DM–HCC individuals than DM–non-HCC individuals (OR 2.53, p = 1.05 × 10−5). Among individuals homozygous for the PNPLA3 G allele (n = 115), the frequency of the JAZF1 rs864745 G allele was significantly higher among DM–HCC individuals than DM–non-HCC individuals (OR 3.44, p = 0.0002).

Conclusions

PNPLA3 and JAZF1 were associated with non-HBV and non-HCV-related HCC development among Japanese patients with T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

T2DM:

Type 2 diabetes mellitus

NASH:

Non-alcoholic steatohepatitis

HCC:

Hepatocellular carcinoma

SNPs:

Single-nucleotide polymorphisms

HBV:

Hepatitis B virus

HCV:

Hepatitis C virus

HBs-Ag:

Hepatitis B surface antigen

anti-HCV Ab:

Anti-hepatitis C virus antibody

PNPLA3:

Patatin-like phospholipase domain-containing protein 3

JAZF1:

Juxtaposed with another zinc finger protein 1

anti-HBc Ab:

Anti-hepatitis B core antibody

References

  1. International Diabetes Federation. IDF Diabetes Atlas, 6th edn. Brussels, Belgium: International Diabetes Federation, 2013. http://www.idf.org/diabetesatlas.

  2. Sasazuki S, Charvat H, Hara A, et al. Diabetes mellitus and cancer risk: pooled analysis of eight cohort studies in Japan. Cancer Sci. 2013;104:1499–507.

    Article  CAS  PubMed  Google Scholar 

  3. Seshasai SR, Kaptoge S, Thompson A, et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med. 2011;364:829–41.

    Article  CAS  PubMed  Google Scholar 

  4. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132:2557–76.

    Article  CAS  PubMed  Google Scholar 

  5. Frayling TM, Colhoun H, Florez JC. A genetic link between type 2 diabetes and prostate cancer. Diabetologia. 2008;51:1757–60.

    Article  CAS  PubMed  Google Scholar 

  6. Cheng I, Caberto CP, Lum-Jones A, et al. Type 2 diabetes risk variants and colorectal cancer risk: the multiethnic cohort and page studies. Gut. 2011;60:1703–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Miyake K, Yang W, Hara K, et al. Construction of a prediction model for type 2 diabetes mellitus in the Japanese population based on 11 genes with strong evidence of the association. J Hum Genet. 2009;54:236–41.

    Article  CAS  PubMed  Google Scholar 

  8. Lyssenko V, Jonsson A, Almgren P, et al. Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med. 2008;359:2220–32.

    Article  CAS  PubMed  Google Scholar 

  9. Talmud PJ, Hingorani AD, Cooper JA, et al. Utility of genetic and non-genetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study. BMJ. 2010;340:b4838.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Omori S, Tanaka Y, Takahashi A, et al. Association of CDKAL1, IGF2BP2, CDKN2A/B, HHEX, SLC30A8, and KCNJ11 with susceptibility to type 2 diabetes in a Japanese population. Diabetes. 2008;57:791–5.

    Article  CAS  PubMed  Google Scholar 

  11. Yasuda K, Miyake K, Horikawa Y, et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet. 2008;40:1092–7.

    Article  CAS  PubMed  Google Scholar 

  12. Tsai FJ, Yang CF, Chen CC, et al. A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese. PLoS Genet. 2010;6:e1000847.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Maeda S, Kobayashi MA, Araki S, et al. A single-nucleotide polymorphism within the acetyl-coenzyme A carboxylase beta gene is associated with proteinuria in patients with type 2 diabetes. PLoS Genet. 2010;6:e1000842.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Okamoto K, Iwasaki N, Nishimura C, et al. Identification of KCNJ15 as a susceptibility gene in Asian patients with type 2 diabetes mellitus. Am J Hum Genet. 2010;86:54–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Leak TS, Langefeld CD, Keene KL, et al. Chromosome 7p linkage and association study for diabetes related traits and type 2 diabetes in an African–American population enriched for nephropathy. BMC Med Genet. 2010;11:22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tanaka N, Babazono T, Saito S, et al. Association of solute carrier family 12 (sodium/chloride) member 3 with diabetic nephropathy, identified by genome-wide analyses of single-nucleotide polymorphisms. Diabetes. 2003;52:2848–53.

    Article  CAS  PubMed  Google Scholar 

  17. Kamiyama M, Kobayashi M, Araki S, et al. Polymorphisms in the 3′ UTR in the neurocalcin delta gene affect mRNA stability, and confer susceptibility to diabetic nephropathy. Hum Genet. 2007;122:397–407.

    Article  CAS  PubMed  Google Scholar 

  18. Shimazaki A, Kawamura Y, Kanazawa A, et al. Genetic variations in the gene encoding ELMO1 are associated with susceptibility to diabetic nephropathy. Diabetes. 2005;54:1171–8.

    Article  CAS  PubMed  Google Scholar 

  19. Romeo S, Kozlitina J, Xing C, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40:1461–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu YL, Patman GL, Leathart JB, et al. Carriage of the PNPLA3 rs738409 C > G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma. J Hepatol. 2014;61:75–81.

    Article  CAS  PubMed  Google Scholar 

  21. Shima T, Uto H, Ueki K, et al. Clinicopathological features of liver injury in patients with type 2 diabetes mellitus and comparative study of histologically proven nonalcoholic fatty liver diseases with or without type 2 diabetes mellitus. J Gastroenterol. 2013;48:515–25.

    Article  CAS  PubMed  Google Scholar 

  22. Gaia S, Carenzi S, Barilli AL, et al. Reliability of transient elastography for the detection of fibrosis in non-alcoholic fatty liver disease and chronic viral hepatitis. J Hepatol. 2011;54:64–71.

    Article  PubMed  Google Scholar 

  23. Nishida N, Tanabe T, Takasu M, et al. Further development of multiplex single-nucleotide polymorphism typing method, the DigiTag2 assay. Anal Biochem. 2007;364:78–85.

    Article  CAS  PubMed  Google Scholar 

  24. Hotta N, Nakamura J, Iwamoto Y, et al. Causes of death in Japanese diabetics: a questionnaire survey of 18,385 diabetics over a 10-year period. J Diabetes Investig. 2010;1:66–76.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kawaguchi T, Sumida Y, Umemura A, et al. Genetic polymorphisms of the human PNPLA3 gene are strongly associated with severity of non-alcoholic fatty liver disease in Japanese. PLoS One. 2012;7:e38322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sookoian S, Castaño GO, Burgueño AL, et al. A nonsynonymous gene variant in the adiponutrin gene is associated with nonalcoholic fatty liver disease severity. J Lipid Res. 2009;50:2111–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yuan X, Waterworth D, Perry JR, et al. Population-based genome-wide association studies reveal six loci influencing plasma levels of liver enzymes. Am J Hum Genet. 2008;83:520–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sookoian S, Pirola CJ. Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology. 2011;53:1883–94.

    Article  CAS  PubMed  Google Scholar 

  29. Sookoian S, Pirola CJ. PNPLA3, the history of an orphan gene of the potato tuber protein family that found an organ: the liver. Hepatology. 2014;59:2068–71.

    Article  CAS  PubMed  Google Scholar 

  30. Trépo E, Nahon P, Bontempi G, et al. Association between the PNPLA3 (rs738409 C > G) variant and hepatocellular carcinoma: evidence from a meta-analysis of individual participant data. Hepatology. 2014;59:2170–7.

    Article  PubMed  Google Scholar 

  31. Takeuchi Y, Ikeda F, Moritou Y, et al. The impact of patatin-like phospholipase domain-containing protein 3 polymorphism on hepatocellular carcinoma prognosis. J Gastroenterol. 2013;48:405–12.

    Article  CAS  PubMed  Google Scholar 

  32. Yasui K, Hashimoto E, Komorizono Y, et al. Characteristics of patients with nonalcoholic steatohepatitis who develop hepatocellular carcinoma. Clin Gastroenterol Hepatol. 2011;9:428–33 (quiz e450).

    Article  PubMed  Google Scholar 

  33. Grarup N, Andersen G, Krarup NT, et al. Association testing of novel type 2 diabetes risk alleles in the JAZF1, CDC123/CAMK1D, TSPAN8, THADA, ADAMTS9, and NOTCH2 loci with insulin release, insulin sensitivity, and obesity in a population-based sample of 4,516 glucose-tolerant middle-aged Danes. Diabetes. 2008;57:2534–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marselli L, Thorne J, Dahiya S, et al. Gene expression profiles of Beta-cell enriched tissue obtained by laser capture microdissection from subjects with type 2 diabetes. PLoS One. 2010;5:e11499.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gjesing AP, Hornbak M, Allin KH, et al. High heritability and genetic correlation of intravenous glucose- and tolbutamide-induced insulin secretion among non-diabetic family members of type 2 diabetic patients. Diabetologia. 2014;57:1173–81.

    Article  CAS  PubMed  Google Scholar 

  36. Kawaguchi T, Izumi N, Charlton MR, et al. Branched-chain amino acids as pharmacological nutrients in chronic liver disease. Hepatology. 2011;54:1063–70.

    Article  CAS  PubMed  Google Scholar 

  37. Kasuga M, Ueki K, Tajima N, et al. Report of the Japan Diabetes Society/Japanese Cancer Association Joint Committee on diabetes and cancer. Cancer Sci. 2013;104:965–76.

    Article  CAS  PubMed  Google Scholar 

  38. Thomas G, Jacobs KB, Yeager M, et al. Multiple loci identified in a genome-wide association study of prostate cancer. Nat Genet. 2008;40:310–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. Yoriko Mawatari, Ms. Mayumi Ishii, Ms. Takayo Tsuchiura, Ms. Kozue Sugimoto, and Ms. Noriko Ota for their technical support. This study was supported by grants (25-202, 26-206) from the National Center for Global Health and Medicine in Japan and the Ministry of Education, Culture, Sports, Science, and Technology (No. 25461019) and by a research award from the Liver Forum in Kyoto; it was also supported in part by the Ministry of Health, Labour, and Welfare of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Korenaga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

M. Ueyama and N. Nishida contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ueyama, M., Nishida, N., Korenaga, M. et al. The impact of PNPLA3 and JAZF1 on hepatocellular carcinoma in non-viral hepatitis patients with type 2 diabetes mellitus. J Gastroenterol 51, 370–379 (2016). https://doi.org/10.1007/s00535-015-1116-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-015-1116-6

Keywords

Navigation