Skip to main content

Advertisement

Log in

Corticotropin-releasing factor receptor type 1 and type 2 interaction in irritable bowel syndrome

  • Review
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Irritable bowel syndrome (IBS) displays chronic abdominal pain or discomfort with altered defecation, and stress-induced altered gut motility and visceral sensation play an important role in the pathophysiology. Corticotropin-releasing factor (CRF) is a main mediator of stress responses and mediates these gastrointestinal functional changes. CRF in brain and periphery acts through two subtype receptors such as CRF receptor type 1 (CRF1) and type 2 (CRF2), and activating CRF1 exclusively stimulates colonic motor function and induces visceral hypersensitivity. Meanwhile, several recent studies have demonstrated that CRF2 has a counter regulatory action against CRF1, which may imply that CRF2 inhibits stress response induced by CRF1 in order to prevent it from going into an overdrive state. Colonic contractility and sensation may be explained by the state of the intensity of CRF1 signaling. CRF2 signaling may play a role in CRF1-triggered enhanced colonic functions through modulation of CRF1 activity. Blocking CRF2 further enhances CRF-induced stimulation of colonic contractility and activating CRF2 inhibits stress-induced visceral sensitization. Therefore, we proposed the hypothesis, i.e., balance theory of CRF1 and CRF2 signaling as follows. Both CRF receptors may be activated simultaneously and the signaling balance of CRF1 and CRF2 may determine the functional changes of gastrointestinal tract induced by stress. CRF signaling balance might be abnormally shifted toward CRF1, leading to enhanced colonic motility and visceral sensitization in IBS. This theory may lead to understanding the pathophysiology and provide the novel therapeutic options targeting altered signaling balance of CRF1 and CRF2 in IBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lovell RM, Ford AC. Global prevalence of and risk factors for irritable bowel syndrome: a meta-analysis. Clin Gastroenterol Hepatol. 2012;10:712–21, e1–4.

  2. Drossman DA, Li Z, Andruzzi E, et al. U.S. householder survey of functional gastrointestinal disorders. Prevalence, sociodemography, and health impact. Dig Dis Sci. 1993;38:1569–80.

    CAS  PubMed  Google Scholar 

  3. Saito YA, Schoenfeld P, Locke GR 3rd. The epidemiology of irritable bowel syndrome in North America: a systematic review. Am J Gastroenterol. 2002;97:1910–5.

    PubMed  Google Scholar 

  4. Lau EM, Chan FK, Ziea ET, et al. Epidemiology of irritable bowel syndrome in Chinese. Dig Dis Sci. 2002;47:2621–4.

    CAS  PubMed  Google Scholar 

  5. Cryan JF, O’Mahony SM. The microbiome–gut–brain axis: from bowel to behavior. Neurogastroenterol Motil. 2011;23:187–92.

    CAS  PubMed  Google Scholar 

  6. Fukudo S, Nomura T, Muranaka M, et al. Brain–gut response to stress and cholinergic stimulation in irritable bowel syndrome. A preliminary study. J Clin Gastroenterol. 1993;17:133–41.

    CAS  PubMed  Google Scholar 

  7. Heinrichs SC, Menzaghi F, Merlo Pich E, et al. The role of CRF in behavioral aspects of stress. Ann N Y Acad Sci. 1995;771:92–104.

    CAS  PubMed  Google Scholar 

  8. Owens MJ, Nemeroff CB. Physiology and pharmacology of corticotropin-releasing factor. Pharmacol Rev. 1991;43:425–73.

    CAS  PubMed  Google Scholar 

  9. Turnbull AV, Rivier C. Corticotropin-releasing factor (CRF) and endocrine responses to stress: CRF receptors, binding protein, and related peptides. Proc Soc Exp Biol Med. 1997;215:1–10.

    CAS  PubMed  Google Scholar 

  10. Karalis K, Sano H, Redwine J, et al. Autocrine or paracrine inflammatory actions of corticotropin-releasing hormone in vivo. Science. 1991;254:421–3.

    CAS  PubMed  Google Scholar 

  11. McInturf SM, Hennessy MB. Peripheral administration of a corticotropin-releasing factor antagonist increases the vocalizing and locomotor activity of isolated guinea pig pups. Physiol Behav. 1996;60:707–10.

    CAS  PubMed  Google Scholar 

  12. Schafer M, Mousa SA, Zhang Q, et al. Expression of corticotropin-releasing factor in inflamed tissue is required for intrinsic peripheral opioid analgesia. Proc Natl Acad Sci USA. 1996;93:6096–100.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Taché Y, Mönnikes H, Bonaz B, et al. Role of CRF in stress-related alterations of gastric and colonic motor function. Ann N Y Acad Sci. 1993;697:233–43.

    PubMed  Google Scholar 

  14. Drossman DA, Camilleri M, Mayer EA, et al. AGA technical review on irritable bowel syndrome. Gastroenterology. 2002;123:2108–31.

    PubMed  Google Scholar 

  15. Lee YJ, Park KS. Irritable bowel syndrome: emerging paradigm in pathophysiology. World J Gastroenterol. 2014;20:2456–69.

    PubMed Central  PubMed  Google Scholar 

  16. Taché Y, Martínez V, Wang L, et al. CRF1 receptor signaling pathways are involved in stress-related alterations of colonic function and viscerosensitivity: implications for irritable bowel syndrome. Br J Pharmacol. 2004;141:1321–30.

    PubMed Central  PubMed  Google Scholar 

  17. Fukudo S, Nomura T, Hongo M. Impact of corticotropin-releasing hormone on gastrointestinal motility and adrenocorticotropic hormone in normal controls and patients with irritable bowel syndrome. Gut. 1998;42:845–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Sagami Y, Shimada Y, Tayama J, et al. Effect of a corticotropin releasing hormone receptor antagonist on colonic sensory and motor function in patients with irritable bowel syndrome. Gut. 2004;53:958–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Nozu T, Kudaira M. Corticotropin-releasing factor induces rectal hypersensitivity after repetitive painful rectal distention in healthy humans. J Gastroenterol. 2006;41:740–4.

    CAS  PubMed  Google Scholar 

  20. Vale W, Spiess J, Rivier C, et al. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science. 1981;213:1394–7.

    CAS  PubMed  Google Scholar 

  21. Vaughan J, Donaldson C, Bittencourt J, et al. Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature. 1995;378:287–92.

    CAS  PubMed  Google Scholar 

  22. Reyes TM, Lewis K, Perrin MH, et al. Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc Natl Acad Sci USA. 2001;98:2843–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Lewis K, Li C, Perrin MH, et al. Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor. Proc Natl Acad Sci USA. 2001;98:7570–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Hauger RL, Grigoriadis DE, Dallman MF, et al. International Union of Pharmacology. XXXVI. Current status of the nomenclature for receptors for corticotropin-releasing factor and their ligands. Pharmacol Rev. 2003;55:21–6.

    CAS  PubMed  Google Scholar 

  25. Hillhouse EW, Grammatopoulos DK. The molecular mechanisms underlying the regulation of the biological activity of corticotropin-releasing hormone receptors: implications for physiology and pathophysiology. Endocr Rev. 2006;27:260–86.

    CAS  PubMed  Google Scholar 

  26. Perrin MH, Vale WW. Corticotropin releasing factor receptors and their ligand family. Ann N Y Acad Sci. 1999;885:312–28.

    CAS  PubMed  Google Scholar 

  27. Blank T, Nijholt I, Grammatopoulos DK, et al. Corticotropin-releasing factor receptors couple to multiple G-proteins to activate diverse intracellular signaling pathways in mouse hippocampus: role in neuronal excitability and associative learning. J Neurosci. 2003;23:700–7.

    CAS  PubMed  Google Scholar 

  28. Soares RL. Irritable bowel syndrome: a clinical review. World J Gastroenterol. 2014;20:12144–60.

    PubMed Central  PubMed  Google Scholar 

  29. Lee OY. Asian motility studies in irritable bowel syndrome. J Neurogastroenterol Motil. 2010;16:120–30.

    PubMed Central  PubMed  Google Scholar 

  30. Bonaz B, Taché Y. Water-avoidance stress-induced c-fos expression in the rat brain and stimulation of fecal output: role of corticotropin-releasing factor. Brain Res. 1994;641:21–8.

    CAS  PubMed  Google Scholar 

  31. Lenz HJ, Raedler A, Greten H, et al. Stress-induced gastrointestinal secretory and motor responses in rats are mediated by endogenous corticotropin-releasing factor. Gastroenterology. 1988;95:1510–7.

    CAS  PubMed  Google Scholar 

  32. Fargeas MJ, Fioramonti J, Bueno L. Central action of interleukin 1 beta on intestinal motility in rats: mediation by two mechanisms. Gastroenterology. 1993;104:377–83.

    CAS  PubMed  Google Scholar 

  33. Mönnikes H, Schmidt BG, Raybould HE, et al. CRF in the paraventricular nucleus mediates gastric and colonic motor response to restraint stress. Am J Physiol Gastrointest Liver Physiol. 1992;262:G137–43.

    Google Scholar 

  34. Mönnikes H, Schmidt BG, Taché Y. Psychological stress-induced accelerated colonic transit in rats involves hypothalamic corticotropin-releasing factor. Gastroenterology. 1993;104:716–23.

    PubMed  Google Scholar 

  35. Martínez V, Rivier J, Wang L, et al. Central injection of a new corticotropin-releasing factor (CRF) antagonist, astressin, blocks CRF- and stress-related alterations of gastric and colonic motor function. J Pharmacol Exp Ther. 1997;280:754–60.

    PubMed  Google Scholar 

  36. Nakade Y, Fukuda H, Iwa M, et al. Restraint stress stimulates colonic motility via central corticotropin-releasing factor and peripheral 5-HT3 receptors in conscious rats. Am J Physiol Gastrointest Liver Physiol. 2007;292:G1037–44.

    CAS  PubMed  Google Scholar 

  37. Lenz HJ, Burlage M, Raedler A, et al. Central nervous system effects of corticotropin-releasing factor on gastrointestinal transit in the rat. Gastroenterology. 1988;94:598–602.

    CAS  PubMed  Google Scholar 

  38. Miyata K, Ito H, Fukudo S. Involvement of the 5-HT3 receptor in CRH-induce defecation in rats. Am J Physiol Gastrointest Liver Physiol. 1998;274:G827–31.

    CAS  Google Scholar 

  39. Martínez V, Wang L, Million M, et al. Urocortins and the regulation of gastrointestinal motor function and visceral pain. Peptides. 2004;25:1733–44.

    PubMed  Google Scholar 

  40. Martínez V, Wang L, Rivier J, et al. Central CRF, urocortins and stress increase colonic transit via CRF1 receptors while activation of CRF2 receptors delays gastric transit in mice. J Physiol. 2004;556:221–34.

    PubMed Central  PubMed  Google Scholar 

  41. Ataka K, Kuge T, Fujino K, et al. Wood creosote prevents CRF-induced motility via 5-HT3 receptors in proximal and 5-HT4 receptors in distal colon in rats. Auton Neurosci. 2007;133:136–45.

    CAS  PubMed  Google Scholar 

  42. Mönnikes H, Schmidt BG, Tebbe J, et al. Microinfusion of corticotropin releasing factor into the locus coeruleus/subcoeruleus nuclei stimulates colonic motor function in rats. Brain Res. 1994;644:101–8.

    PubMed  Google Scholar 

  43. Raadsheer FC, Hoogendijk WJ, Stam FC, et al. Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology. 1994;60:436–44.

    CAS  PubMed  Google Scholar 

  44. Weiss JM, Stout JC, Aaron MF, et al. Depression and anxiety: role of the locus coeruleus and corticotropin-releasing factor. Brain Res Bull. 1994;35:561–72.

    CAS  PubMed  Google Scholar 

  45. Arborelius L, Skelton KH, Thrivikraman KV, et al. Chronic administration of the selective corticotropin-releasing factor 1 receptor antagonist CP-154, 526: behavioral, endocrine and neurochemical effects in the rat. J Pharmacol Exp Ther. 2000;294:588–97.

    CAS  PubMed  Google Scholar 

  46. Luiten PG, ter Horst GJ, Karst H, et al. The course of paraventricular hypothalamic efferents to autonomic structures in medulla and spinal cord. Brain Res. 1985;329:374–8.

    CAS  PubMed  Google Scholar 

  47. Silverman AJ, Hou-Yu A, Chen WP. Corticotropin-releasing factor synapses within the paraventricular nucleus of the hypothalamus. Neuroendocrinology. 1989;49:291–9.

    CAS  PubMed  Google Scholar 

  48. Berridge CW, Waterhouse BD. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Brain Res Rev. 2003;42:33–84.

    PubMed  Google Scholar 

  49. Butler PD, Weiss JM, Stout JC, et al. Corticotropin-releasing factor produces fear-enhancing and behavioral activating effects following infusion into the locus coeruleus. J Neurosci. 1990;10:176–83.

    CAS  PubMed  Google Scholar 

  50. Koob GF. Corticotropin-releasing factor, norepinephrine, and stress. Biol Psychiatry. 1999;46:1167–80.

    CAS  PubMed  Google Scholar 

  51. Garakani A, Win T, Virk S, et al. Comorbidity of irritable bowel syndrome in psychiatric patients: a review. Am J Ther. 2003;10:61–7.

    PubMed  Google Scholar 

  52. American Gastroenterology Association. American Gastroenterological Association medical position statement: irritable bowel syndrome. Gastroenterology. 2002;123:2105–7.

    Google Scholar 

  53. Million M, Wang L, Martínez V, et al. Differential Fos expression in the paraventricular nucleus of the hypothalamus, sacral parasympathetic nucleus and colonic motor response to water avoidance stress in Fischer and Lewis rats. Brain Res. 2000;877:345–53.

    CAS  PubMed  Google Scholar 

  54. Castagliuolo I, Lamont JT, Qiu B, et al. Acute stress causes mucin release from rat colon: role of corticotropin releasing factor and mast cells. Am J Physiol Gastrointest Liver Physiol. 1996;271:G884–92.

    CAS  Google Scholar 

  55. Williams CL, Peterson JM, Villar RG, et al. Corticotropin-releasing factor directly mediates colonic responses to stress. Am J Physiol Gastrointest Liver Physiol. 1987;253:G582–6.

    CAS  Google Scholar 

  56. Maillot C, Million M, Wei JY, et al. Peripheral corticotropin-releasing factor and stress-stimulated colonic motor activity involve type 1 receptor in rats. Gastroenterology. 2000;119:1569–79.

    CAS  PubMed  Google Scholar 

  57. Kimura T, Amano T, Uehara H, et al. Urocortin I is present in the enteric nervous system and exerts an excitatory effect via cholinergic and serotonergic pathways in the rat colon. Am J Physiol Gastrointest Liver Physiol. 2007;293:G903–10.

    CAS  PubMed  Google Scholar 

  58. Nozu T, Takakusaki K, Okumura T. A balance theory of peripheral corticotropin-releasing factor receptor type 1 and type 2 signaling to induce colonic contractions and visceral hyperalgesia in rats. Endocrinology. 2014;155:4655–64.

    PubMed  Google Scholar 

  59. Martínez V, Wang L, Rivier JE, et al. Differential actions of peripheral corticotropin-releasing factor (CRF), urocortin II, and urocortin III on gastric emptying and colonic transit in mice: role of CRF receptor subtypes 1 and 2. J Pharmacol Exp Ther. 2002;301:611–7.

    PubMed  Google Scholar 

  60. Million M, Maillot C, Saunders P, et al. Human urocortin II, a new CRF-related peptide, displays selective CRF2-mediated action on gastric transit in rats. Am J Physiol Gastrointest Liver Physiol. 2002;282:G34–40.

    CAS  PubMed  Google Scholar 

  61. Larauche M, Gourcerol G, Wang L, et al. Cortagine, a CRF1 agonist, induces stresslike alterations of colonic function and visceral hypersensitivity in rodents primarily through peripheral pathways. Am J Physiol Gastrointest Liver Physiol. 2009;297:G215–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Gourcerol G, Wu SV, Yuan PQ, et al. Activation of corticotropin-releasing factor receptor 2 mediates the colonic motor coping response to acute stress in rodents. Gastroenterology. 2011;140:1586–96, e1–6.

  63. Yuan PQ, Wu SV, Wang L, et al. Corticotropin releasing factor in the rat colon: expression, localization and upregulation by endotoxin. Peptides. 2010;31:322–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Chatzaki E, Crowe PD, Wang L, et al. CRF receptor type 1 and 2 expression and anatomical distribution in the rat colon. J Neurochem. 2004;90:309–16.

    CAS  PubMed  Google Scholar 

  65. von Mentzer B, Murata Y, Ahlstedt I, et al. Functional CRF receptors in BON cells stimulate serotonin release. Biochem Pharmacol. 2007;73:805–13.

    Google Scholar 

  66. Theoharides TC, Donelan JM, Papadopoulou N, et al. Mast cells as targets of corticotropin-releasing factor and related peptides. Trends Pharmacol Sci. 2004;25:563–8.

    CAS  PubMed  Google Scholar 

  67. Wallon C, Yang PC, Keita AV, et al. Corticotropin-releasing hormone (CRH) regulates macromolecular permeability via mast cells in normal human colonic biopsies in vitro. Gut. 2008;57:50–8.

    CAS  PubMed  Google Scholar 

  68. Audhya T, Jain R, Hollander CS. Receptor-mediated immunomodulation by corticotropin-releasing factor. Cell Immunol. 1991;134:77–84.

    CAS  PubMed  Google Scholar 

  69. Kawahito Y, Sano H, Kawata M, et al. Local secretion of corticotropin-releasing hormone by enterochromaffin cells in human colon. Gastroenterology. 1994;106:859–65.

    CAS  PubMed  Google Scholar 

  70. Muramatsu Y, Fukushima K, Iino K, et al. Urocortin and corticotropin-releasing factor receptor expression in the human colonic mucosa. Peptides. 2000;21:1799–809.

    CAS  PubMed  Google Scholar 

  71. Wu SV, Yuan PQ, Lai J, et al. Activation of Type 1 CRH receptor isoforms induces serotonin release from human carcinoid BON-1N cells: an enterochromaffin cell model. Endocrinology. 2011;152:126–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Overman EL, Rivier JE, Moeser AJ. CRF induces intestinal epithelial barrier injury via the release of mast cell proteases and TNF-alpha. PLoS One. 2012;7:e39935.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Kempuraj D, Papadopoulou NG, Lytinas M, et al. Corticotropin-releasing hormone and its structurally related urocortin are synthesized and secreted by human mast cells. Endocrinology. 2004;145:43–8.

    CAS  PubMed  Google Scholar 

  74. Fukumoto S, Tatewaki M, Yamada T, et al. Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. Am J Physiol Regul Integr Comp Physiol. 2003;284:R1269–76.

    CAS  PubMed  Google Scholar 

  75. Yuan PQ, Million M, Wu SV, et al. Peripheral corticotropin releasing factor (CRF) and a novel CRF1 receptor agonist, stressin1-A activate CRF1 receptor expressing cholinergic and nitrergic myenteric neurons selectively in the colon of conscious rats. Neurogastroenterol Motil. 2007;19:923–36.

    CAS  PubMed  Google Scholar 

  76. Bisschops R, Vanden Berghe P, Sarnelli G, et al. CRF-induced calcium signaling in guinea pig small intestine myenteric neurons involves CRF-1 receptors and activation of voltage-sensitive calcium channels. Am J Physiol Gastrointest Liver Physiol. 2006;290:G1252–60.

    CAS  PubMed  Google Scholar 

  77. Tsukamoto K, Nakade Y, Mantyh C, et al. Peripherally administered CRF stimulates colonic motility via central CRF receptors and vagal pathways in conscious rats. Am J Physiol Regul Integr Comp Physiol. 2006;290:R1537–41.

    CAS  PubMed  Google Scholar 

  78. Perrin MH, Donaldson CJ, Chen R, et al. Cloning and functional expression of a rat brain corticotropin releasing factor (CRF) receptor. Endocrinology. 1993;133:3058–61.

    CAS  PubMed  Google Scholar 

  79. Wang L, Martínez V, Vale W, et al. Fos induction in selective hypothalamic neuroendocrine and medullary nuclei by intravenous injection of urocortin and corticotropin-releasing factor in rats. Brain Res. 2000;855:47–57.

    CAS  PubMed  Google Scholar 

  80. Maillot C, Wang L, Million M, et al. Intraperitoneal corticotropin-releasing factor and urocortin induce Fos expression in brain and spinal autonomic nuclei and long lasting stimulation of colonic motility in rats. Brain Res. 2003;974:70–81.

    CAS  PubMed  Google Scholar 

  81. Menetrey D, De Pommery J. Origins of spinal ascending pathways that reach central areas involved in visceroception and visceronociception in the rat. Eur J Neurosci. 1991;3:249–59.

    PubMed  Google Scholar 

  82. Hay M, Bishop VS. Interactions of area postrema and solitary tract in the nucleus tractus solitarius. Am J Physiol Heart Circ Physiol. 1991;260:H1466–73.

    CAS  Google Scholar 

  83. Van Pett K, Viau V, Bittencourt JC, et al. Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse. J Comp Neurol. 2000;428:191–212.

    PubMed  Google Scholar 

  84. Mercer JG, Lawrence CB, Copeland PA. Corticotropin-releasing factor binding sites undergo axonal transport in the rat vagus nerve. J Neuroendocrinol. 1992;4:281–6.

    CAS  PubMed  Google Scholar 

  85. Davis SF, Derbenev AV, Williams KW, et al. Excitatory and inhibitory local circuit input to the rat dorsal motor nucleus of the vagus originating from the nucleus tractus solitarius. Brain Res. 2004;1017:208–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Mertz H, Naliboff B, Munakata J, et al. Altered rectal perception is a biological marker of patients with irritable bowel syndrome. Gastroenterology. 1995;109:40–52.

    CAS  PubMed  Google Scholar 

  87. Mayer EA, Raybould HE. Role of visceral afferent mechanisms in functional bowel disorders. Gastroenterology. 1990;99:1688–704.

    CAS  PubMed  Google Scholar 

  88. van der Veek PP, Van Rood YR, Masclee AA. Symptom severity but not psychopathology predicts visceral hypersensitivity in irritable bowel syndrome. Clin Gastroenterol Hepatol. 2008;6:321–8.

    PubMed  Google Scholar 

  89. Kuiken SD, Lindeboom R, Tytgat GN, et al. Relationship between symptoms and hypersensitivity to rectal distension in patients with irritable bowel syndrome. Aliment Pharmacol Ther. 2005;22:157–64.

    CAS  PubMed  Google Scholar 

  90. Mayer EA, Gebhart GF. Basic and clinical aspects of visceral hyperalgesia. Gastroenterology. 1994;107:271–93.

    CAS  PubMed  Google Scholar 

  91. Posserud I, Syrous A, Lindstrom L, et al. Altered rectal perception in irritable bowel syndrome is associated with symptom severity. Gastroenterology. 2007;133:1113–23.

    PubMed  Google Scholar 

  92. Prior A, Sorial E, Sun W-M, et al. Irritable bowel syndrome: differences between patients who show rectal sensitivity and those who do not. Eur J Gastroenterol Hepatol. 1993;5:343–9.

    Google Scholar 

  93. Bouin M, Plourde V, Boivin M, et al. Rectal distention testing in patients with irritable bowel syndrome: sensitivity, specificity, and predictive values of pain sensory thresholds. Gastroenterology. 2002;122:1771–7.

    PubMed  Google Scholar 

  94. Nozu T, Kudaira M, Kitamori S, et al. Repetitive rectal painful distention induces rectal hypersensitivity in patients with irritable bowel syndrome. J Gastroenterol. 2006;41:217–22.

    PubMed  Google Scholar 

  95. Munakata J, Naliboff B, Harraf F, et al. Repetitive sigmoid stimulation induces rectal hyperalgesia in patients with irritable bowel syndrome. Gastroenterology. 1997;112:55–63.

    CAS  PubMed  Google Scholar 

  96. Gué M, Del Rio-Lacheze C, Eutamene H, et al. Stress-induced visceral hypersensitivity to rectal distension in rats: role of CRF and mast cells. Neurogastroenterol Motil. 1997;9:271–9.

    PubMed  Google Scholar 

  97. Schwetz I, McRoberts JA, Coutinho SV, et al. Corticotropin-releasing factor receptor 1 mediates acute and delayed stress-induced visceral hyperalgesia in maternally separated Long-Evans rats. Am J Physiol Gastrointest Liver Physiol. 2005;289:G704–12.

    CAS  PubMed  Google Scholar 

  98. Greenwood-Van Meerveld B, Johnson AC, Cochrane S, et al. Corticotropin-releasing factor 1 receptor-mediated mechanisms inhibit colonic hypersensitivity in rats. Neurogastroenterol Motil. 2005;17:415–22.

    CAS  PubMed  Google Scholar 

  99. Kosoyan HP, Grigoriadis DE, Taché Y. The CRF(1) receptor antagonist, NBI-35965, abolished the activation of locus coeruleus neurons induced by colorectal distension and intracisternal CRF in rats. Brain Res. 2005;1056:85–96.

    CAS  PubMed  Google Scholar 

  100. Su J, Tanaka Y, Muratsubaki T, et al. Injection of corticotropin-releasing hormone into the amygdala aggravates visceral nociception and induces noradrenaline release in rats. Neurogastroenterol Motil. 2015;27:30–9.

    CAS  PubMed  Google Scholar 

  101. Kim SH, Han JE, Hwang S, et al. The expression of corticotropin-releasing factor in the central nucleus of the amygdala, induced by colorectal distension, is attenuated by general anesthesia. J Korean Med Sci. 2010;25:1646–51.

    PubMed Central  PubMed  Google Scholar 

  102. Neugebauer V, Li W, Bird GC, et al. The amygdala and persistent pain. Neuroscientist. 2004;10:221–34.

    PubMed  Google Scholar 

  103. Phelps EA, LeDoux JE. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron. 2005;48:175–87.

    CAS  PubMed  Google Scholar 

  104. De Francesco PN, Valdivia S, Cabral A, et al. Neuroanatomical and functional characterization of CRF neurons of the amygdala using a novel transgenic mouse model. Neuroscience. 2015;289C:153–65.

    Google Scholar 

  105. Gray TS, Bingaman EW. The amygdala: corticotropin-releasing factor, steroids, and stress. Crit Rev Neurobiol. 1996;10:155–68.

    CAS  PubMed  Google Scholar 

  106. Kravets JL, Reyes BA, Unterwald EM, et al. Direct targeting of peptidergic amygdalar neurons by noradrenergic afferents: linking stress-integrative circuitry. Brain Struct Funct. 2015;220:541–58.

    CAS  PubMed  Google Scholar 

  107. Berridge CW. Noradrenergic modulation of arousal. Brain Res Rev. 2008;58:1–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Coutinho SV, Plotsky PM, Sablad M, et al. Neonatal maternal separation alters stress-induced responses to viscerosomatic nociceptive stimuli in rat. Am J Physiol Gastrointest Liver Physiol. 2002;282:G307–16.

    CAS  PubMed  Google Scholar 

  109. Nemeroff CB. Neurobiological consequences of childhood trauma. J Clin Psychiatry. 2004;65(Suppl 1):18–28.

    CAS  PubMed  Google Scholar 

  110. Ladd CO, Thrivikraman KV, Huot RL, et al. Differential neuroendocrine responses to chronic variable stress in adult Long Evans rats exposed to handling-maternal separation as neonates. Psychoneuroendocrinology. 2005;30:520–33.

    CAS  PubMed  Google Scholar 

  111. Francis DD, Caldji C, Champagne F, et al. The role of corticotropin-releasing factor—norepinephrine systems in mediating the effects of early experience on the development of behavioral and endocrine responses to stress. Biol Psychiatry. 1999;46:1153–66.

    CAS  PubMed  Google Scholar 

  112. Kalinichev M, Easterling KW, Plotsky PM, et al. Long-lasting changes in stress-induced corticosterone response and anxiety-like behaviors as a consequence of neonatal maternal separation in Long-Evans rats. Pharmacol Biochem Behav. 2002;73:131–40.

    CAS  PubMed  Google Scholar 

  113. Larauche M, Bradesi S, Million M, et al. Corticotropin-releasing factor type 1 receptors mediate the visceral hyperalgesia induced by repeated psychological stress in rats. Am J Physiol Gastrointest Liver Physiol. 2008;294:G1033–40.

    CAS  PubMed  Google Scholar 

  114. Million M, Wang L, Wang Y, et al. CRF2 receptor activation prevents colorectal distension induced visceral pain and spinal ERK1/2 phosphorylation in rats. Gut. 2006;55:172–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Mawe GM, Coates MD, Moses PL. Review article: intestinal serotonin signalling in irritable bowel syndrome. Aliment Pharmacol Ther. 2006;23:1067–76.

    CAS  PubMed  Google Scholar 

  116. van den Wijngaard RM, Klooker TK, de Jonge WJ, et al. Peripheral relays in stress-induced activation of visceral afferents in the gut. Auton Neurosci. 2010;153:99–105.

    PubMed  Google Scholar 

  117. Barbara G, Wang B, Stanghellini V, et al. Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology. 2007;132:26–37.

    CAS  PubMed  Google Scholar 

  118. Cremon C, Carini G, Wang B, et al. Intestinal serotonin release, sensory neuron activation, and abdominal pain in irritable bowel syndrome. Am J Gastroenterol. 2011;106:1290–8.

    CAS  PubMed  Google Scholar 

  119. Ait-Belgnaoui A, Bradesi S, Fioramonti J, et al. Acute stress-induced hypersensitivity to colonic distension depends upon increase in paracellular permeability: role of myosin light chain kinase. Pain. 2005;113:141–7.

    CAS  PubMed  Google Scholar 

  120. Nakade Y, Tsuchida D, Fukuda H, et al. Restraint stress augments postprandial gastric contractions but impairs antropyloric coordination in conscious rats. Am J Physiol Regul Integr Comp Physiol. 2006;290:R616–24.

    CAS  PubMed  Google Scholar 

  121. Million M, Maillot C, Adelson DA, et al. Peripheral injection of sauvagine prevents repeated colorectal distension-induced visceral pain in female rats. Peptides. 2005;26:1188–95.

    CAS  PubMed  Google Scholar 

  122. Chrousos GP. Stress and disorders of the stress system. Nat Rev Endocrinol. 2009;5:374–81.

    CAS  PubMed  Google Scholar 

  123. Nozu T, Tsuchiya Y, Kumei S, et al. Peripheral corticotropin-releasing factor (CRF) induces stimulation of gastric contractions in freely moving conscious rats: role of CRF receptor types 1 and 2. Neurogastroenterol Motil. 2013;25:190–7.

    CAS  PubMed  Google Scholar 

  124. O’malley D, Julio-Pieper M, Gibney SM, et al. Differential stress-induced alterations of colonic corticotropin-releasing factor receptors in the Wistar Kyoto rat. Neurogastroenterol Motil. 2010;22:301–11.

    PubMed  Google Scholar 

  125. Liu S, Ren W, Qu MH, et al. Differential actions of urocortins on neurons of the myenteric division of the enteric nervous system in guinea pig distal colon. Br J Pharmacol. 2010;159:222–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Posserud I, Agerforz P, Ekman R, et al. Altered visceral perceptual and neuroendocrine response in patients with irritable bowel syndrome during mental stress. Gut. 2004;53:1102–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Fukudo S, Kanazawa M, Kano M, et al. Exaggerated motility of the descending colon with repetitive distention of the sigmoid colon in patients with irritable bowel syndrome. J Gastroenterol. 2002;37(Suppl 14):145–50.

    PubMed  Google Scholar 

  128. Fukudo S, Suzuki J. Colonic motility, autonomic function, and gastrointestinal hormones under psychological stress on irritable bowel syndrome. Tohoku J Exp Med. 1987;151:373–85.

    CAS  PubMed  Google Scholar 

  129. Tanaka Y, Kanazawa M, Fukudo S, et al. Biopsychosocial model of irritable bowel syndrome. J Neurogastroenterol Motil. 2011;17:131–9.

    PubMed Central  PubMed  Google Scholar 

  130. Rittenhouse PA, Lopez-Rubalcava C, Stanwood GD, et al. Amplified behavioral and endocrine responses to forced swim stress in the Wistar-Kyoto rat. Psychoneuroendocrinology. 2002;27:303–18.

    PubMed  Google Scholar 

  131. Gunter WD, Shepard JD, Foreman RD, et al. Evidence for visceral hypersensitivity in high-anxiety rats. Physiol Behav. 2000;69:379–82.

    CAS  PubMed  Google Scholar 

  132. Courvoisier H, Moisan MP, Sarrieau A, et al. Behavioral and neuroendocrine reactivity to stress in the WKHA/WKY inbred rat strains: a multifactorial and genetic analysis. Brain Res. 1996;743:77–85.

    CAS  PubMed  Google Scholar 

  133. Sato N, Suzuki N, Sasaki A, et al. Corticotropin-releasing hormone receptor 1 gene variants in irritable bowel syndrome. PLoS One. 2012;7:e42450.

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Hsu DT, Mickey BJ, Langenecker SA, et al. Variation in the corticotropin-releasing hormone receptor 1 (CRHR1) gene influences fMRI signal responses during emotional stimulus processing. J Neurosci. 2012;32:3253–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Markovic D, Grammatopoulos DK. Focus on the splicing of secretin GPCRs transmembrane-domain 7. Trends Biochem Sci. 2009;34:443–52.

    CAS  PubMed  Google Scholar 

  136. Sweetser S, Camilleri M, Linker Nord SJ, et al. Do corticotropin releasing factor-1 receptors influence colonic transit and bowel function in women with irritable bowel syndrome? Am J Physiol Gastrointest Liver Physiol. 2009;296:G1299–306.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Suda T, Kageyama K, Sakihara S, et al. Physiological roles of urocortins, human homologues of fish urotensin I, and their receptors. Peptides. 2004;25:1689–701.

    CAS  PubMed  Google Scholar 

  138. Nozu T, Martínez V, Rivier J, et al. Peripheral urocortin delays gastric emptying: role of CRF receptor 2. Am J Physiol Gastrointest Liver Physiol. 1999;276:G867–74.

    CAS  Google Scholar 

  139. Barbara G, Zecchi L, Barbaro R, et al. Mucosal permeability and immune activation as potential therapeutic targets of probiotics in irritable bowel syndrome. J Clin Gastroenterol. 2012;46(Suppl):S52–5.

    PubMed  Google Scholar 

  140. Kassinen A, Krogius-Kurikka L, Makivuokko H, et al. The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology. 2007;133:24–33.

    CAS  PubMed  Google Scholar 

  141. Chadwick VS, Chen W, Shu D, et al. Activation of the mucosal immune system in irritable bowel syndrome. Gastroenterology. 2002;122:1778–83.

    PubMed  Google Scholar 

  142. Labus JS, Dinov ID, Jiang Z, et al. Irritable bowel syndrome in female patients is associated with alterations in structural brain networks. Pain. 2014;155:137–49.

    PubMed Central  PubMed  Google Scholar 

  143. Larauche M, Kiank C, Taché Y. Corticotropin releasing factor signaling in colon and ileum: regulation by stress and pathophysiological implications. J Physiol Pharmacol. 2009;60(Suppl 7):33–46.

    PubMed Central  PubMed  Google Scholar 

  144. Mayer EA, Savidge T, Shulman RJ. Brain–gut microbiome interactions and functional bowel disorders. Gastroenterology. 2014;146:1500–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Labus JS, Hubbard CS, Bueller J, et al. Impaired emotional learning and involvement of the corticotropin-releasing factor signaling system in patients with irritable bowel syndrome. Gastroenterology. 2013;145:1253–61, e1–3.

Download references

Acknowledgments

Work in the authors’ laboratory was supported by a Grant-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science, and Technology.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsukasa Nozu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nozu, T., Okumura, T. Corticotropin-releasing factor receptor type 1 and type 2 interaction in irritable bowel syndrome. J Gastroenterol 50, 819–830 (2015). https://doi.org/10.1007/s00535-015-1086-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-015-1086-8

Keywords

Navigation