Skip to main content

Advertisement

Log in

Possible involvement of Toll-like receptor 7 in the development of type 1 autoimmune pancreatitis

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

High serum immunoglobulin G4 (IgG4) levels and IgG4-positive plasma cell infiltration are characteristic of type 1 autoimmune pancreatitis (AIP). It is unclear whether innate immunity is a cause of type 1 AIP; the possible involvement of microbial infection has been suggested in its pathogenesis. To clarify the pathogenesis of type 1 AIP, we investigated Toll-like receptors (TLRs) in type 1 AIP patients.

Methods

We studied nine cases of type 1 AIP with ten cases of alcoholic chronic pancreatitis (ACP) and three of the samples from non-tumorous lesion of neuroendocrine tumor (NET) as control subjects. We counted the number of TLR1-11-positive cells immunohistochemically stained with anti-TLR1-11 antibodies. To identify TLR-positive cells in pancreata from type 1 AIP patients, we used a double-immunofluorescence method and counted the numbers of identifiable CD68-, CD163-, CD123-, and CD20-positive cells.

Results

In type 1 AIP, TLR7 (8.815 ± 1.755), TLR8 (3.852 ± 1.489), and TLR10 (3.852 ± 0.921) were highly expressed. Only the ratio of TLR7 per monocyte was significantly higher in type 1 AIP (0.053 ± 0.012) than in ACP (0.007 ± 0.004; p < 0.01) and non-tumorous lesion of NET (0.000 ± 0.000; p < 0.01). In type 1 AIP, the CD163 to TLR7 ratio (0.789 ± 0.031) was significantly higher both than that of CD123 to TLR7 ratio (0.034 ± 0.006; p < 0.001) and CD20 to TLR7 ratio (0.029 ± 0.010; p < 0.001).

Conclusions

TLR7 might be key pattern-recognition receptors involved in the development of type 1 AIP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sarles H, Sarles JC, Muratore R, et al. Chronic inflammatory sclerosis of the pancreas—an autonomous pancreatic disease? Am J Dig Dis. 1961;6:688–98.

    Article  CAS  PubMed  Google Scholar 

  2. Kawaguchi K, Koike M, Tsuruta K, et al. Lymphoplasmacytic sclerosing pancreatitis with cholangitis: a variant of primary sclerosing cholangitis extensively involving pancreas. Hum Pathol. 1991;22:387–95.

    Article  CAS  PubMed  Google Scholar 

  3. Yoshida K, Toki F, Takeuchi T, et al. Chronic pancreatitis caused by an autoimmune abnormality. Proposal of the concept of autoimmune pancreatitis. Dig Dis Sci. 1995;40:1561–8.

    Article  CAS  PubMed  Google Scholar 

  4. Hamano H, Kawa S, Horiuchi A, et al. High serum IgG4 concentrations in patients with sclerosing pancreatitis. N Engl J Med. 2001;344:732–8.

    Article  CAS  PubMed  Google Scholar 

  5. Kamisawa T, Funata N, Hayashi Y, et al. A new clinicopathological entity of IgG4-related autoimmune disease. J Gastroenterol. 2003;38:982–4.

    Article  CAS  PubMed  Google Scholar 

  6. Ito T, Nakano I, Koyanagi S, et al. Autoimmune pancreatitis as a new clinical entity. Three cases of autoimmune pancreatitis with effective steroid therapy. Dig Dis Sci. 1997;42:1458–68.

    Article  CAS  PubMed  Google Scholar 

  7. Horiuchi A, Kawa S, Akamatsu T, et al. Characteristic pancreatic duct appearance in autoimmune chronic pancreatitis: a case report and review of the Japanese literature. Am J Gastroenterol. 1998;93:260–3.

    Article  CAS  PubMed  Google Scholar 

  8. Uchida K, Okazaki K, Konishi Y, et al. Clinical analysis of autoimmune-related pancreatitis. Am J Gastroenterol. 2000;95:2788–94.

    Article  CAS  PubMed  Google Scholar 

  9. Okazaki K, Uchida K, Chiba T. Recent concept of autoimmune-related pancreatitis. J Gastroenterol. 2001;36:293–302.

    Article  CAS  PubMed  Google Scholar 

  10. Zamboni G, Luttges J, Capelli P, et al. Histopathological features of diagnostic and clinical relevance in autoimmune pancreatitis: a study on 53 resection specimens and 9 biopsy specimens. Virchows Arch. 2004;445:552–63.

    Article  PubMed  Google Scholar 

  11. Notohara K, Burgart LJ, Yadav D, et al. Idiopathic chronic pancreatitis with periductal lymphoplasmacytic infiltration: clinicopathologic features of 35 cases. Am J Surg Pathol. 2003;27:1119–27.

    Article  PubMed  Google Scholar 

  12. Shimosegawa T, Chari ST, Frulloni L, et al. International consensus diagnostic criteria for autoimmune pancreatitis: guidelines of the International Association of Pancreatology. Pancreas. 2011;40:352–8.

    Article  PubMed  Google Scholar 

  13. Okazaki K, Kawa S, Kamisawa T, et al. Japanese consensus guidelines for management of autoimmune pancreatitis: I. Concept and diagnosis of autoimmune pancreatitis. J Gastroenterol. 2010;45:249–65.

    Article  PubMed  Google Scholar 

  14. Ota M, Katsuyama Y, Hamano H, et al. Two critical genes (HLA-DRB1 and ABCF1) in the HLA region are associated with the susceptibility to autoimmune pancreatitis. Immunogenetics. 2007;59:45–52.

    Article  CAS  PubMed  Google Scholar 

  15. Umemura T, Ota M, Hamano H, Katsuyama Y, et al. Association of autoimmune pancreatitis with cytotoxic T-lymphocyte antigen 4 gene polymorphisms in Japanese patients. Am J Gastroenterol. 2008;103:588–94.

    Article  CAS  PubMed  Google Scholar 

  16. Umemura T, Ota M, Hamano H, et al. Genetic association of Fc receptor-like 3 polymorphisms with autoimmune pancreatitis in Japanese patients. Gut. 2006;55:1367–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Zen Y, Fujii T, Harada K, Kawano M, et al. Th2 and regulatory immune reactions are increased in immunoglobin G4-related sclerosing pancreatitis and cholangitis. Hepatology. 2007;45:1538–46.

    Article  CAS  PubMed  Google Scholar 

  18. Kusuda T, Uchida K, Miyoshi H, et al. Involvement of inducible costimulator- and interleukin 10-positive regulatory T cells in the development of IgG4-related autoimmune pancreatitis. Pancreas. 2011;40:1120–30.

    Article  CAS  PubMed  Google Scholar 

  19. Watanabe T, Yamashita K, Fujikawa S, et al. Involvement of activation of Toll-like receptors and nucleotide-binding oligomerization domain-like receptors in enhanced IgG4 responses in autoimmune pancreatitis. Arthritis Rheum. 2012;64:914–24.

    Article  CAS  PubMed  Google Scholar 

  20. Watanabe T, Yamashita K, Sakurai T, et al. Toll-like receptor activation in basophils contributes to the development of IgG4-related disease. J Gastroenterol. 2013;48:247–53.

    Article  CAS  PubMed  Google Scholar 

  21. Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197–216.

    Article  CAS  PubMed  Google Scholar 

  22. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801.

    Article  CAS  PubMed  Google Scholar 

  23. Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature. 2007;449:819–26.

    Article  CAS  PubMed  Google Scholar 

  24. Beutler BA. TLRs and innate immunity. Blood. 2009;113:1399–407.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Pasare C, Medzhitov R. Toll-like receptors and acquired immunity. Semin Immunol. 2004;16:23–6.

    Article  CAS  PubMed  Google Scholar 

  26. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11:373–84.

    Article  CAS  PubMed  Google Scholar 

  27. Koyabu M, Uchida K, Miyoshi H, et al. Analysis of regulatory T cells and IgG4-positive plasma cells among patients of IgG4-related sclerosing cholangitis and autoimmune liver diseases. J Gastroenterol. 2010;45:732–41.

    Article  CAS  PubMed  Google Scholar 

  28. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4:499–511.

    Article  CAS  PubMed  Google Scholar 

  29. Witte CL, Schanzer B. Pancreatitis due to mumps. JAMA. 1968;203:1068–9.

    Article  CAS  PubMed  Google Scholar 

  30. Feldstein JD, Johnson FR, Kallick CA, et al. Acute hemorrhagic pancreatitis and pseudocyst due to mumps. Ann Surg. 1974;180:85–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Ursing B. Acute pancreatitis in coxsackie B infection. Br Med J. 1973;3:524–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Bunnell CE, Monif GR. Interstitial pancreatitis in the congenital rubella syndrome. J Pediatr. 1972;80:465–6.

    Article  CAS  PubMed  Google Scholar 

  33. Jain P, Nijhawan S, Rai RR, et al. Acute pancreatitis in acute viral hepatitis. World J Gastroenterol. 2007;13:5741–4.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Rizzardi GP, Tambussi G, Lazzarin A. Acute pancreatitis during primary HIV-1 infection. N Engl J Med. 1997;336:1836–7.

    Article  CAS  PubMed  Google Scholar 

  35. Blum A, Podvitzky O, Shalabi R, et al. Acute pancreatitis may be caused by H1N1 influenza A virus infection. Isr Med Assoc J. 2010;12:640–1.

    PubMed  Google Scholar 

  36. Barrat FJ, Coffman RL. Development of TLR inhibitors for the treatment of autoimmune diseases. Immunol Rev. 2008;223:271–83.

    Article  CAS  PubMed  Google Scholar 

  37. Ewald SE, Barton GM. Nucleic acid sensing Toll-like receptors in autoimmunity. Curr Opin Immunol. 2011;23:3–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Umemura T, Katsuyama Y, Hamano H, et al. Association analysis of Toll-like receptor 4 polymorphisms with autoimmune pancreatitis. Hum Immunol. 2009;70:742–6.

    Article  CAS  PubMed  Google Scholar 

  39. Meagher C, Tang Q, Fife BT, et al. Spontaneous development of a pancreatic exocrine disease in CD28-deficient NOD mice. J Immunol. 2008;180:7793–803.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Davidson TS, Longnecker DS, Hickey WF. An experimental model of autoimmune pancreatitis in the rat. Am J Pathol. 2005;166:729–36.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Vallance BA, Hewlett BR, Snider DP, et al. T cell-mediated exocrine pancreatic damage in major histocompatibility complex class II-deficient mice. Gastroenterology. 1998;115:978–87.

    Article  CAS  PubMed  Google Scholar 

  42. Tsubata R, Tsubata T, Hiai H, et al. Autoimmune disease of exocrine organs in immunodeficient alymphoplasia mice: a spontaneous model for Sjögren’s syndrome. Eur J Immunol. 1996;26:2742–8.

    Article  CAS  PubMed  Google Scholar 

  43. Hosaka N, Nose M, Kyogoku M, et al. Thymus transplantation, a critical factor for correction of autoimmune disease in aging MRL/+ mice. Proc Natl Acad Sci USA. 1996;93:8558–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Kanno H, Nose M, Itoh J, et al. Spontaneous development of pancreatitis in the MRL/Mp strain of mice in autoimmune mechanism. Clin Exp Immunol. 1992;89:68–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Watanabe S, Suzuki K, Kawauchi Y, et al. Kinetic analysis of the development of pancreatic lesions in mice infected with a murine retrovirus. Clin Immunol. 2003;109:212–23.

    Article  CAS  PubMed  Google Scholar 

  46. Suzuki K, Makino M, Okada Y, et al. Exocrinopathy resembling Sjögren’s syndrome induced by a murine retrovirus. Lab Invest. 1993;69:430–5.

    CAS  PubMed  Google Scholar 

  47. Qu WM, Miyazaki T, Terada M, et al. A novel autoimmune pancreatitis model in MRL mice treated with polyinosinic:polycytidylic acid. Clin Exp Immunol. 2002;129:27–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Yamashina M, Nishio A, Nakayama S, et al. Comparative study on experimental autoimmune pancreatitis and its extrapancreatic involvement in mice. Pancreas. 2012;41:1255–62.

    Article  CAS  PubMed  Google Scholar 

  49. Nishio A, Asada M, Uchida K, et al. The role of innate immunity in the pathogenesis of experimental autoimmune pancreatitis in mice. Pancreas. 2011;40:95–102.

    Article  CAS  PubMed  Google Scholar 

  50. Asada M, Nishio A, Akamatsu T, et al. Analysis of humoral immune response in experimental autoimmune pancreatitis in mice. Pancreas. 2010;39:224–31.

    Article  CAS  PubMed  Google Scholar 

  51. Soga Y, Komori H, Miyazaki T, et al. Toll-like receptor 3 signaling induces chronic pancreatitis through the Fas/Fas ligand-mediated cytotoxicity. Tohoku J Exp Med. 2009;217:175–84.

    Article  CAS  PubMed  Google Scholar 

  52. Haruta I, Yanagisawa N, Kawamura S, et al. A mouse model of autoimmune pancreatitis with salivary gland involvement triggered by innate immunity via persistent exposure to avirulent bacteria. Lab Invest. 2010;90:1757–69.

    Article  CAS  PubMed  Google Scholar 

  53. Masamune A, Kikuta K, Watanabe T, et al. Pancreatic stellate cells express Toll-like receptors. J Gastroenterol. 2008;43:352–62.

    Article  CAS  PubMed  Google Scholar 

  54. Sharif R, Dawra R, Wasiluk K, et al. Impact of Toll-like receptor 4 on the severity of acute pancreatitis and pancreatitis-associated lung injury in mice. Gut. 2009;58:813–9.

    Article  CAS  PubMed  Google Scholar 

  55. Ding SQ, Li Y, Zhou ZG, et al. Toll-like receptor 4-mediated apoptosis of pancreatic cells in cerulein-induced acute pancreatitis in mice. Hepatobiliary Pancreat Dis Int. 2010;9:645–50.

    CAS  PubMed  Google Scholar 

  56. Hoque R, Sohail M, Malik A, et al. TLR9 and the NLRP3 inflammasome link acinar cell death with inflammation in acute pancreatitis. Gastroenterology. 2011;141:358–69.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Marques JT, Williams BR. Activation of the mammalian immune system by siRNAs. Nat Biotechnol. 2005;23:1399–405.

    Article  CAS  PubMed  Google Scholar 

  58. Hornung V, Rothenfusser S, Britsch S, et al. Quantitative expression of Toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol. 2002;168:4531–7.

    Article  CAS  PubMed  Google Scholar 

  59. Gantier MP, Tong S, Behlke MA, et al. TLR7 is involved in sequence-specific sensing of single-stranded RNAs in human macrophages. J Immunol. 2008;180:2117–24.

    Article  CAS  PubMed  Google Scholar 

  60. Greena NM, Marshak-Rothstein A. Toll-like receptor driven B cell activation in the induction of systemic autoimmunity. Semin Immunol. 2011;23:106–12.

    Article  Google Scholar 

  61. Chamberlain ND, Kim SJ, Vila OM, et al. Ligation of TLR7 by rheumatoid arthritis synovial fluid single-strand RNA induces transcription of TNFα in monocytes. Ann Rheum Dis. 2013;72:418–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Reed JH, Jain M, Lee K, et al. Complement receptor 3 influences Toll-like receptor 7/8-dependent inflammation: implications for autoimmune diseases characterized by antibody reactivity to ribonucleoproteins. J Biol Chem. 2013;29(288):9077–83.

    Article  Google Scholar 

  63. Shikhagaie MM, Andersson CK, Mori M, et al. Mapping of TLR5 and TLR7 in central and distal human airways and identification of reduced TLR expression in severe asthma. Clin Exp Allergy. 2014;44:184–96.

    Article  CAS  PubMed  Google Scholar 

  64. Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3:23–35.

    Article  CAS  PubMed  Google Scholar 

  65. Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 2009;27:451–83.

    Article  CAS  PubMed  Google Scholar 

  66. Van Gorp H, Delputte PL, Nauwynck HJ. Scavenger receptor CD163, a Jack-of-all-trades and potential target for cell-directed therapy. Mol Immunol. 2010;47:1650–60.

    Article  PubMed  Google Scholar 

  67. Detlefsen S, Sipos B, Zhao J, et al. Autoimmune pancreatitis: expression and cellular source of profibrotic cytokines and their receptors. Am J Surg Pathol. 2008;32:986–95.

    Article  PubMed  Google Scholar 

  68. Notohara K, Wani Y, Fujisawa M. Proliferation of CD163+ spindle-shaped macrophages in IgG4-related sclerosing disease: analysis of lymphoplasmacytic sclerosing pancreatitis and sclerosing sialadenitis. Mod Pathol. 2010;23:367A.

    Article  Google Scholar 

  69. Jensen TO, Schmidt H, Moller HJ, et al. Macrophage markers in serum and tumor have prognostic impact in American Joint Committee on Cancer stage I/II melanoma. J Clin Oncol. 2009;27:3330–7.

    Article  PubMed  Google Scholar 

  70. Lee CH, Espinosa I, Vrijaldenhoven S, et al. Prognostic significance of macrophage infiltration in leiomyosarcomas. Clin Cancer Res. 2008;14:1423–30.

    Article  CAS  PubMed  Google Scholar 

  71. Kamper P, Bendix K, Hamilton-Dutoit S, et al. Tumor-infiltrating macrophages correlate with adverse prognosis and Epstein–Barr virus status in classical Hodgkin’s lymphoma. Haematologica. 2011;96:269–76.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Maniecki MB, Moller HJ, Moestrup SK, et al. CD163 positive subsets of blood dendritic cells: the scavenging macrophage receptors CD163 and CD91 are coexpressed on human dendritic cells and monocytes. Immunobiology. 2006;211:407–17.

    Article  CAS  PubMed  Google Scholar 

  73. Geissmann F, Gordon S, Hume DA, et al. Unravelling mononuclear phagocyte heterogeneity. Nat Rev Immunol. 2010;10:453–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Sung SA, Jo SK, Cho WY, et al. Reduction of renal fibrosis as a result of liposome encapsulated clodronate induced macrophage depletion after unilateral ureteral obstruction in rats. Nephron Exp Nephrol. 2007;105:e1–9.

    Article  PubMed  Google Scholar 

  75. Kitamoto K, Machida Y, Uchida J, et al. Effects of liposome clodronate on renal leukocyte populations and renal fibrosis in murine obstructive nephropathy. J Pharmacol Sci. 2009;111:285–92.

    Article  CAS  PubMed  Google Scholar 

  76. Cheever AW, Williams ME, Wynn TA, et al. Anti-IL-4 treatment of Schistosoma mansoni-infected mice inhibits development of T cells and non-B, non-T cells expressing Th2 cytokines while decreasing egg-induced hepatic fibrosis. J Immunol. 1994;153:753–9.

    CAS  PubMed  Google Scholar 

  77. Chiaramonte MG, Donaldson DD, Cheever AW, et al. An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response. J Clin Invest. 1999;104:777–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Reiman RM, Thompson RW, Feng CG, et al. Interleukin-5 (IL-5) augments the progression of liver fibrosis by regulating IL-13 activity. Infect Immun. 2006;74:1471–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Balmelli C, Alves MP, Steiner E, et al. Responsiveness of fibrocytes to Toll-like receptor danger signals. Immunobiology. 2007;212:693–9.

    Article  CAS  PubMed  Google Scholar 

  80. Pulskens WP, Rampanelli E, Teske GJ, et al. TLR4 promotes fibrosis but attenuates tubular damage in progressive renal injury. J Am Soc Nephrol. 2010;21:1299–308.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Pradere JP, Troeger JS, Dapito DH, Mencin AA, Schwabe RF. Toll-like receptor 4 and hepatic fibrogenesis. Semin Liver Dis. 2010;30:232–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Braga TT, Correa-Costa M, Guise YF, et al. MyD88 signaling pathway is involved in renal fibrosis by favoring a TH2 immune response and activating alternative M2 macrophages. Mol Med. 2012;18:1231–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Uchida K, Okazaki K, Nishi T, et al. Experimental immune-mediated pancreatitis in neonatally thymectomized mice immunized with carbonic anhydrase II and lactoferrin. Lab Invest. 2002;82:411–24.

    Article  CAS  PubMed  Google Scholar 

  84. Uchida K, Kusuda T, Koyabu M, et al. Regulatory T cells in type 1 autoimmune pancreatitis. Int J Rheumatol. 2012;. doi:10.1155/2012/795026.

    Google Scholar 

  85. Miyoshi H, Uchida K, Taniguchi T, et al. Circulating naïve and CD4 + CD25high regulatory T cells in patients with autoimmune pancreatitis. Pancreas. 2008;36:133–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partially supported by (1) Grant-in-Aid for Scientific Research (C) of the Ministry of Culture and Science of Japan (26461038, 23591017, 24591020), (2) Grant-in-Aid for “Research for Intractable Diseases” Program from the Ministry of Labor and Welfare of Japan, (3) Grants-in-Aid from CREST Japan Science and Technology Agency, and (4) NEXT-Supported Program for Strategic Research Foundation at Private Universities. The authors thank Professor A-Hon Kwon for surgery of pancreas.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuichi Okazaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukui, Y., Uchida, K., Sakaguchi, Y. et al. Possible involvement of Toll-like receptor 7 in the development of type 1 autoimmune pancreatitis. J Gastroenterol 50, 435–444 (2015). https://doi.org/10.1007/s00535-014-0977-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-014-0977-4

Keywords

Navigation