Skip to main content
Log in

Loss of autophagy promotes murine acetaminophen hepatotoxicity

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Previous reports indicate that mitochondrial dysfunction is essential for the development of liver injury due to acetaminophen. On the other hand, autophagy, which is a major catabolic pathway, plays a critical role in removing protein aggregates, as well as damaged or excess mitochondria in order to maintain intracellular homeostasis. The aim of this study was to clarify if autophagy is linked to liver injury due to acetaminophen.

Methods

Acetaminophen was administered intraperitoneally to liver-specific Atg7-deficient mice and wild-type mice. A variety of cellular and molecular approaches were used to evaluate the role of autophagy in acetaminophen-induced cell death.

Results

Treatment with acetaminophen induced formation of autophagosomes in hepatocytes from wild-type mice, but not in Atg7-deficient mice. Autophagy deficiency enhanced acetaminophen-induced liver injury and activation of caspase-3 and -7 in the liver. Acetaminophen-induced reactive oxygen species (ROS) production, mitochondrial membrane depolarization, and JNK activation in hepatocytes were accelerated by autophagy deficiency. The combination of cyclosporin A or JNK inhibitor (SP600125) with acetaminophen blunted both acetaminophen-induced apoptotic and necrotic cell death in autophagy-deficient hepatocytes.

Conclusions

Induction of autophagy during acetaminophen treatment plays a pivotal role in the protection against acetaminophen-induced hepatotoxicity through the removal of damaged mitochondria and oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fannin R, Russo M, O’Connell T, Gerrish K, Winnike J, Macdonald J, et al. Acetaminophen dosing of humans results in blood transcriptome and metabolome changes consistent with impaired oxidative phosphorylation. Hepatology. 2010;51(1):227–36.

    Article  PubMed  CAS  Google Scholar 

  2. Dargan P, Jones A. Acetaminophen poisoning: an update for the intensivist. Crit Care. 2002;6(2):108–10.

    Article  PubMed  Google Scholar 

  3. Nagai H, Matsumaru K, Feng G, Kaplowitz N. Reduced glutathione depletion causes necrosis and sensitization to tumor necrosis factor-alpha-induced apoptosis in cultured mouse hepatocytes. Hepatology. 2002;36(1):55–64.

    Article  PubMed  CAS  Google Scholar 

  4. Burcham P, Harman A. Acetaminophen toxicity results in site-specific mitochondrial damage in isolated mouse hepatocytes. J Biol Chem. 1991;266(8):5049–54.

    PubMed  CAS  Google Scholar 

  5. Pumford N, Halmes N. Protein targets of xenobiotic reactive intermediates. Annu Rev Pharmacol Toxicol. 1997;37:91–117.

    Article  PubMed  CAS  Google Scholar 

  6. Masubuchi Y, Suda C, Horie T. Involvement of mitochondrial permeability transition in acetaminophen-induced liver injury in mice. J Hepatol. 2005;42(1):110–6.

    Article  PubMed  CAS  Google Scholar 

  7. Kim J, He L, Qian T, Lemasters J. Role of the mitochondrial permeability transition in apoptotic and necrotic death after ischemia/reperfusion injury to hepatocytes. Curr Mol Med. 2003;3(6):527–35.

    Article  PubMed  CAS  Google Scholar 

  8. Kim J, Qian T, Lemasters J. Mitochondrial permeability transition in the switch from necrotic to apoptotic cell death in ischemic rat hepatocytes. Gastroenterology. 2003;124(2):494–503.

    Article  PubMed  CAS  Google Scholar 

  9. Klionsky D, Ohsumi Y. Vacuolar import of proteins and organelles from the cytoplasm. Annu Rev Cell Dev Biol. 1999;15:1–32.

    Article  PubMed  CAS  Google Scholar 

  10. Schworer C, Shiffer K, Mortimore G. Quantitative relationship between autophagy and proteolysis during graded amino acid deprivation in perfused rat liver. J Biol Chem. 1981;256(14):7652–8.

    PubMed  CAS  Google Scholar 

  11. Levine B, Klionsky D. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004;6(4):463–77.

    Article  PubMed  CAS  Google Scholar 

  12. Yoshimori T. Autophagy: a regulated bulk degradation process inside cells. Biochem Biophys Res Commun. 2004;313(2):453–8.

    Article  PubMed  CAS  Google Scholar 

  13. Espert L, Denizot M, Grimaldi M, Robert-Hebmann V, Gay B, Varbanov M, et al. Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. J Clin Invest. 2006;116(8):2161–72.

    Article  PubMed  CAS  Google Scholar 

  14. Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas E, et al. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res. 2001;61(2):439–44.

    PubMed  CAS  Google Scholar 

  15. Koike M, Shibata M, Tadakoshi M, Gotoh K, Komatsu M, Waguri S, et al. Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol. 2008;172(2):454–69.

    Article  PubMed  CAS  Google Scholar 

  16. Cuervo A, Bergamini E, Brunk U, Dröge W, Ffrench M, Terman A. Autophagy and aging: the importance of maintaining “clean” cells. Autophagy. 2005;1(3):131–40.

    Article  PubMed  Google Scholar 

  17. Inami Y, Yamashina S, Izumi K, Ueno T, Tanida I, Ikejima K, Watanabe S. Hepatic steatosis inhibits autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression. Biochem Biophys Res Commun. 2011;412(4):618–25.

    Article  PubMed  CAS  Google Scholar 

  18. Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol. 2005;169(3):425–34.

    Article  PubMed  CAS  Google Scholar 

  19. Kon K, Kim J, Jaeschke H, Lemasters J. Mitochondrial permeability transition in acetaminophen-induced necrosis and apoptosis of cultured mouse hepatocytes. Hepatology. 2004;40(5):1170–9.

    Article  PubMed  CAS  Google Scholar 

  20. Kim J, Nitta T, Mohuczy D, O’Malley K, Moldawer L, Dunn WJ, et al. Impaired autophagy: a mechanism of mitochondrial dysfunction in anoxic rat hepatocytes. Hepatology. 2008;47(5):1725–36.

    Article  PubMed  CAS  Google Scholar 

  21. Leist M, Single B, Castoldi A, Kühnle S, Nicotera P. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med. 1997;185(8):1481–6.

    Article  PubMed  CAS  Google Scholar 

  22. Lemasters JV. Necrapoptosis and the mitochondrial permeability transition: shared pathways to necrosis and apoptosis. Am J Physiol. 1999;276(1 Pt 1):G1–6.

    Google Scholar 

  23. Rashed M, Nelson S. Characterization of glutathione conjugates of reactive metabolites of 3′-hydroxyacetanilide, a nonhepatotoxic positional isomer of acetaminophen. Chem Res Toxicol. 1989;2(1):41–5.

    Article  PubMed  CAS  Google Scholar 

  24. Elmore S, Qian T, Grissom S, Lemasters J. The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB J. 2001;15(12):2286–7.

    PubMed  CAS  Google Scholar 

  25. Rodriguez-Enriquez S, Kim I, Currin R, Lemasters J. Tracker dyes to probe mitochondrial autophagy (mitophagy) in rat hepatocytes. Autophagy. 2006;2(1):39–46.

    PubMed  CAS  Google Scholar 

  26. Gunawan B, Liu Z, Han D, Hanawa N, Gaarde W, Kaplowitz N. c-Jun N-terminal kinase plays a major role in murine acetaminophen hepatotoxicity. Gastroenterology. 2006;131(1):165–78.

    Article  PubMed  CAS  Google Scholar 

  27. Ghosh J, Das J, Manna P, Sil P. Arjunolic acid, a triterpenoid saponin, prevents acetaminophen (APAP)-induced liver and hepatocyte injury via the inhibition of APAP bioactivation and JNK-mediated mitochondrial protection. Free Radic Biol Med. 2010;48(4):535–53.

    Article  PubMed  CAS  Google Scholar 

  28. Conde de la Rosa L, Schoemaker M, Vrenken T, Buist-Homan M, Havinga R, Jansen P, et al. Superoxide anions and hydrogen peroxide induce hepatocyte death by different mechanisms: involvement of JNK and ERK MAP kinases. J Hepatol. 2006;44(5):918–29.

    Article  PubMed  CAS  Google Scholar 

  29. Kim B, Ryu S, Song B. JNK- and p38 kinase-mediated phosphorylation of Bax leads to its activation and mitochondrial translocation and to apoptosis of human hepatoma HepG2 cells. J Biol Chem. 2006;281(30):21256–65.

    Article  PubMed  CAS  Google Scholar 

  30. de Grey A. A proposed refinement of the mitochondrial free radical theory of aging. Bioessays. 1997;19(2):161–6.

    Article  PubMed  Google Scholar 

  31. Brunk U, Terman A. The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur J Biochem. 2002;269(8):1996–2002.

    Article  PubMed  CAS  Google Scholar 

  32. Rodriguez-Enriquez S, Kai Y, Maldonado E, Currin R, Lemasters J. Roles of mitophagy and the mitochondrial permeability transition in remodeling of cultured rat hepatocytes. Autophagy. 2009;5(8):1099–106.

    Article  PubMed  CAS  Google Scholar 

  33. Tarantino G, Conca P, Basile V, Gentile A, Capone D, Polichetti G, et al. A prospective study of acute drug-induced liver injury in patients suffering from non-alcoholic fatty liver disease. Hepatol Res. 2007;37(6):410–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grant-in-Aid (No. 20590797 to SY, No. 21390234 to SW) and High Technology Research Center Grant from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunhei Yamashina.

Electronic supplementary material

Below is the link to the electronic supplementary material.

535_2011_500_MOESM1_ESM.ppt

Supplementary Fig. 1 Effect of cyclosporine A and rapamycin on APAP-induced liver injury. (a) Mice were killed at 12 h after APAP treatment. Some wild-type and Atg7-KO mice were injected intraperitoneally with cyclosporine A (10 mg/kg) or rapamycin (5 mg/kg) for 3 days prior to APAP treatment. Serum ALT levels of WT and KO mice were measured. Bars represent mean and SEM (n = 4, *; P < 0.05 vs, WT at 12 h after APAP treatment, **; P < 0.05 vs, KO at 12 h after APAP treatment, by ANOVA on ranks). (PPT 144 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Igusa, Y., Yamashina, S., Izumi, K. et al. Loss of autophagy promotes murine acetaminophen hepatotoxicity. J Gastroenterol 47, 433–443 (2012). https://doi.org/10.1007/s00535-011-0500-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-011-0500-0

Keywords

Navigation