Skip to main content

Advertisement

Log in

Molecular targeted therapy for hepatocellular carcinoma in the current and potential next strategies

  • Review
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide and its incidence is still increasing. While the primary curative treatment for HCC is surgical resection, a major obstacle for the treatment of HCC is the high frequency of tumor recurrence even after curative resection. Effective palliative treatment is hindered by the evidence that HCC is frequently resistant to conventional chemotherapy and radiotherapy. Targeted therapy which specifically inhibits molecular abnormalities has emerged as a novel approach for the innovative and effective medical treatment of malignancies. In order to fulfill this promise there is an urgent need to identify the optimal targets for the treatment of HCC. A multi-kinase angiogenesis inhibitor, sorafenib, has been revealed as the first agent to show favorable overall survival in patients with advanced HCC. A new era of HCC treatment has arrived, but there has been limited improvement in survival benefits with the status quo. This review summarizes molecular targeted therapy for HCC, with a focus on angiogenesis, growth signaling, and mitosis, as well as a promising concept, “cancer stemness” for the current and potential next strategies of HCC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arii S, Yamaoka Y, Futagawa S, et al. Results of surgical and nonsurgical treatment for small-sized hepatocellular carcinomas: a retrospective and nationwide survey in Japan. The Liver Cancer Study Group of Japan. Hepatology. 2000;32:1224–9.

    Article  PubMed  CAS  Google Scholar 

  2. Weinstein IB. Cancer. Addiction to oncogenes—the Achilles heel of cancer. Science. 2002;297:63–4.

    Article  PubMed  CAS  Google Scholar 

  3. Tanaka S, Arii S. Molecularly targeted therapy for hepatocellular carcinoma. Cancer Sci. 2009;100:1–8.

    Article  PubMed  CAS  Google Scholar 

  4. Llovet JM, Bruix J. Molecular targeted therapies in hepatocellular carcinoma. Hepatology. 2008;48:1312–27.

    Article  PubMed  CAS  Google Scholar 

  5. Ishii H, Iwatsuki M, Ieta K, Ohta D, Haraguchi N, Mimori K, Mori M. Cancer stem cells and chemoradiation resistance. Cancer Sci. 2008;99:1871–7.

    Article  PubMed  CAS  Google Scholar 

  6. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86:353–64.

    Article  PubMed  CAS  Google Scholar 

  7. Tanaka S, Arii S. Current status of perspective of antiangiogenic therapy for cancer; hepatocellular carcinoma. Int J Clin Oncol. 2006;11:82–9.

    Article  PubMed  CAS  Google Scholar 

  8. Ferrara N. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer. 2002;2:795–803.

    Article  PubMed  CAS  Google Scholar 

  9. Mise M, Arii S, Higashituji H, et al. Clinical significance of vascular endothelial growth factor and basic fibroblast growth factor gene expression in liver tumor. Hepatology. 1996;23:455–64.

    Article  PubMed  CAS  Google Scholar 

  10. Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 2008;22:1276–312.

    Article  PubMed  CAS  Google Scholar 

  11. Kuhnert F, Tam BY, Sennino B, et al. Soluble receptor-mediated selective inhibition of VEGFR and PDGFRbeta signaling during physiologic and tumor angiogenesis. Proc Natl Acad Sci USA. 2008;105:10185–90.

    Article  PubMed  CAS  Google Scholar 

  12. Uematsu S, Higashi T, Nouso K, et al. Altered expression of vascular endothelial growth factor, fibroblast growth factor-2 and endostatin in patients with hepatocellular carcinoma. J Gastroenterol Hepatol. 2005;20:583–8.

    Article  PubMed  CAS  Google Scholar 

  13. Poon RT, Ng IO, Lau C, Yu WC, Fan ST, Wong J. Correlation of serum basic fibroblast growth factor levels with clinicopathologic features and postoperative recurrence in hepatocellular carcinoma. Am J Surg. 2001;182:298–304.

    Article  PubMed  CAS  Google Scholar 

  14. Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.

    Article  PubMed  CAS  Google Scholar 

  15. Faivre S, Raymond E, Boucher E, et al. Safety and efficacy of sunitinib in patients with advanced hepatocellular carcinoma: an open-label, multicentre, phase II study. Lancet Oncol. 2009;10:794–800.

    Article  PubMed  CAS  Google Scholar 

  16. Tanaka S, Mori M, Sakamoto Y, Makuuchi M, Sugimachi K, Wands JR. Biologic significance of angiopoietin-2 expression in human hepatocellular carcinoma. J Clin Invest. 1999;103:341–5.

    Article  PubMed  CAS  Google Scholar 

  17. Tanaka S, Wands JR, Arii S. Induction of angiopoietin-2 gene expression by COX-2: a novel role for COX-2 inhibitors during hepatocarcinogenesis. J Hepatol. 2006;44:233–5.

    Article  PubMed  CAS  Google Scholar 

  18. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science. 1999;284:1994–8.

    Article  PubMed  CAS  Google Scholar 

  19. Tanaka S, Sugimachi K, Yamashita Yi Y, Ohga T, Shirabe K, Shimada M, Wands JR, Sugimachi K. Tie2 vascular endothelial receptor expression and function in hepatocellular carcinoma. Hepatology. 2002;35:861–7.

    Article  PubMed  CAS  Google Scholar 

  20. Etoh T, Inoue H, Tanaka S, Bernard GF, Kitano S, Mori M. Angiopoietin-2 is related to tumor angiogenesis in gastric carcinoma: possible in vivo regulation via induction of proteases. Cancer Res. 2001;61:2145–53.

    PubMed  CAS  Google Scholar 

  21. Herbst RS, Hong D, Chap L, et al. Safety, pharmacokinetics, and antitumor activity of AMG 386, a selective angiopoietin inhibitor, in adult patients with advanced solid tumors. J Clin Oncol. 2009;27:3557–65.

    Article  PubMed  CAS  Google Scholar 

  22. Wilhelm SM, Dumas J, Adnane L, Lynch M, Carter CA, Schütz G, Thierauch KH, Zopf D. Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal, and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer. 2011 (in press).

  23. Tanaka S, Sugimachi K, Maehara S, et al. Oncogenic signal transduction and therapeutic strategy for hepatocellular carcinoma. Surgery. 2002;131:S142–7.

    Article  PubMed  Google Scholar 

  24. Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer. 2006;6:674–87.

    Article  PubMed  CAS  Google Scholar 

  25. Tanaka S, Arii S. Current status of molecularly targeted therapy for hepatocellular carcinoma: basic science. Int J Clin Oncol. 2010;15:235–41.

    Article  PubMed  CAS  Google Scholar 

  26. Tanaka S, Arii S, Yasen M, Mogushi K, Su NT, Zhao C, et al. Aurora kinase B is a predictive factor for the aggressive recurrence of hepatocellular carcinoma after curative hepatectomy. Br J Surg. 2008;95:611–9.

    Article  PubMed  CAS  Google Scholar 

  27. Keen N, Taylor S. Aurora-kinase inhibitors as anticancer agents. Nat Rev Cancer. 2004;4:927–36.

    Article  PubMed  CAS  Google Scholar 

  28. Aihara A, Tanaka S, Yasen M, et al. The selective Aurora B kinase inhibitor AZD1152 as a novel treatment for hepatocellular carcinoma. J Hepatol. 2010;52:63–71.

    Article  PubMed  CAS  Google Scholar 

  29. Loges S, Mazzone M, Hohensinner P, Carmeliet P. Silencing or fueling metastasis with VEGF inhibitors: antiangiogenesis revisited. Cancer Cell. 2009;15:167–70.

    Article  PubMed  CAS  Google Scholar 

  30. Keith B, Simon MC. Hypoxia-inducible factors, stem cells, and cancer. Cell. 2007;129:465–72.

    Article  PubMed  CAS  Google Scholar 

  31. Mohyeldin A, Garzón-Muvdi T, Quiñones-Hinojosa A. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell. 2010;7:150–61.

    Article  PubMed  CAS  Google Scholar 

  32. Arai F, Suda T. Maintenance of quiescent hematopoietic stem cells in the osteoblastic niche. Ann NY Acad Sci. 2007;1106:41–53.

    Article  PubMed  CAS  Google Scholar 

  33. Iwasaki H, Suda T. Cancer stem cells and their niche. Cancer Sci. 2009;100:1166–72.

    Article  PubMed  CAS  Google Scholar 

  34. Calabrese C, Poppleton H, Kocak M, et al. A perivascular niche for brain tumor stem cells. Cancer Cell. 2007;11:69–82.

    Article  PubMed  CAS  Google Scholar 

  35. Cammareri P, Scopelliti A, Todaro M, et al. Aurora-A is essential for the tumorigenic capacity and chemoresistance of colorectal cancer stem cells. Cancer Res. 2010;70:4655–65.

    Article  PubMed  CAS  Google Scholar 

  36. Haraguchi N, Ishii H, Mimori K, et al. CD13 is a therapeutic target in human liver cancer stem cells. J Clin Invest. 2010;120:3326–39.

    Article  PubMed  CAS  Google Scholar 

  37. Mazumdar J, O’Brien WT, Johnson RS, LaManna JC, Chavez JC, Klein PS, Simon MC. O2 regulates stem cells through Wnt/β-catenin signalling. Nat Cell Biol. 2010;12:1007–13.

    Google Scholar 

  38. Tanaka S, Akiyoshi T, Mori M, Wands JR, Sugimachi K. A novel frizzled gene identified in human esophageal carcinoma mediates APC/β-catenin signals. Proc Natl Acad Sci USA. 1998;95:10164–9.

    Article  PubMed  CAS  Google Scholar 

  39. Merle P, De la Monte S, Kim M, Herrmann M, Tanaka S, Von Dem Bussche A, Kew MC, Trepo C, Wands JR. Functional consequences of frizzled-7 receptor overexpression in human hepatocellular carcinoma. Gastroenterology. 2004;127:1110–22.

    Article  PubMed  CAS  Google Scholar 

  40. de La Coste A, Romagnolo B, et al. Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci USA. 1998;95:8847–51.

    Article  PubMed  Google Scholar 

  41. Satoh S, Daigo Y, Furukawa Y, et al. Axin 1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of Axin 1. Nat Genet. 2000;24:245–50.

    Article  PubMed  CAS  Google Scholar 

  42. Tanaka S, Sugimachi K, Kameyama T, Maehara S, Shirabe K, Shimada M, Wands JR, Maehara Y. Human WISP1v, a member of CCN family, is associated with invasive cholangiocarcinoma. Hepatology. 2003;37:1122–9.

    Article  PubMed  CAS  Google Scholar 

  43. Murakata A, Tanaka S, Mogushi K, et al. Gene expression signature of the gross morphology in hepatocellular carcinoma. Ann Surg. 2011;253:94–100.

    Article  PubMed  Google Scholar 

  44. Huang SM, Mishina YM, Liu S, et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 2009;461:614–20.

    Article  PubMed  CAS  Google Scholar 

  45. Thorne CA, Hanson AJ, Schneider J, et al. Small-molecule inhibition of Wnt signaling through activation of casein kinase 1α. Nat Chem Biol. 2010;6:829–36.

    Article  PubMed  CAS  Google Scholar 

  46. Kaelin WG Jr. The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer. 2005;5:689–98.

    Article  PubMed  CAS  Google Scholar 

  47. Dobzhansky T. Genetics of natural populations. XIII. Recombination and variability in populations of Drosophila pseudoobscura. Genetics. 1946;31:269–90.

    Google Scholar 

  48. Luo J, Emanuele MJ, Li D, et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell. 2009;137:835–48.

    Article  PubMed  CAS  Google Scholar 

  49. Fong PC, Boss DS, Yap TA, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361:123–34.

    Article  PubMed  CAS  Google Scholar 

  50. Iglehart JD, Silver DP. Synthetic lethality–a new direction in cancer-drug development. N Engl J Med. 2009;361:189–91.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

No author has any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Tanaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, S., Arii, S. Molecular targeted therapy for hepatocellular carcinoma in the current and potential next strategies. J Gastroenterol 46, 289–296 (2011). https://doi.org/10.1007/s00535-011-0387-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-011-0387-9

Keywords

Navigation