Skip to main content

Advertisement

Log in

Late Triassic acidic volcanic clasts in different Neotethyan sedimentary mélanges: paleogeographic and geodynamic implications

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

U/Pb zircon dating and trace element geochemical analysis were performed on rhyolite clasts of different Middle Jurassic sedimentary mélanges from the Western Carpathian and Dinaric orogen. These igneous clast-bearing sedimentary successions were deposited on the westernmost passive margin of the Neotethys Ocean. During the latest Jurassic and Cretaceous, they became parts of different nappe stacks forming now the Inner Western Carpathians and some inselbergs within the Pannonian Basin. The Meliata nappe was stacked on the northern passive margin, while the Telekesoldal and Mónosbél nappes were part of the imbricated western–southwestern margin. U/Pb dating of the 100 m-sized rhyolite blocks and redeposited smaller clasts within the mélange, and fine-grained sediments formed two age groups: 222.6 ± 6.7 and 209.0 ± 9 Ma. Trace element geochemistry suggested within-plate continental volcanism as magma source. However, the measured ages are definitely younger than the classic, rift-related Anisian–Ladinian (238–242 Ma) magmatism, which was wide-spread along the western and southwestern margin of the Neotethys Ocean (e.g., Dolomites and different Dinaridic units). On the other hand, similarly, Late Triassic ages are reported from tuff intercalations from the Outer Dinarides and Western Carpathians, along with even more sparse effusive rocks of the Slovenian Trough. Trace element (incl. rare-earth element) analysis showed positive correlation between the mélange clasts and the in situ Late Triassic rhyolites of the Slovenian Trough. This newly established link between the mélange nappes in NE Hungary and the in situ Late Triassic rhyolites in the Slovenian Trough make a good opportunity to reconsider both Middle Jurassic paleogeography, and later tectonic deformations, which led to the separation of the source area and the redeposited clasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Árkai P, Faryad SW, Vidal O, Balogh K (2003) Very low-grade metamorphism of sedimentary rocks of the Meliata unit, Western Carpathians, Slovakia: implications of phyllosilicate characteristics. Int J Earth Sci 92:68–85

    Google Scholar 

  • Aubrecht R, Gawlick HJ, Missoni S, Plašienka D (2012) Meliata type locality revisited: evidence for the need of reinvestigation of the Meliata Unit and redefinition of the Meliata Mélange. Mineralia Slovaca, 44 Web ISSN 1338–3523, ISSN 0369–2086

  • Balla Z (1983) A szarvaskői szinform rétegsora és tektonikája. Annu Rep Eötvös Loránd Geophysical Inst Hung 1982:42–65

    Google Scholar 

  • Balla Z, Baksa CS, Földessy J, Havas L, Szabó I (1980) The tectonic setting of ophiolites in the Bükk Mountains (North Hungary). Geologicky Zbornik–Geol Carpath 31(4):465–493

    Google Scholar 

  • Behrmann JH, Tanner DC (2006) Structural synthesis of the Northern Calcareous Alps, TRANSALP segment. Tectonophysics 414:225–240

    Article  Google Scholar 

  • Bertotti G, Picotti V, Bernoulli D, Castellarin A (1993) From rifting to drifting: tectonic evolution of the South-Alpine upper crust from the Triassic to the Early Cretaceous. Sed Geol 86(1–2):53–76. https://doi.org/10.1016/0037-0738(93)90133-P

    Article  Google Scholar 

  • Budai T, Németh K, Piros O (2004) Middle Triassic platform carbonates and volcanites in the Latemar area (Dolomites, Italy). Annu Rep Hung Geol Inst 2004:175–188 (in Hungarian with English abstract)

    Google Scholar 

  • Castellarin A, Lucchini F, Rossi PL, Selli L, Simboli G (1988) The middle Triassic magmatic-tectonic arc development in the southern Alps. Tectonophysics 146:79–89

    Article  Google Scholar 

  • Csontos L (1988) Etude géologique d’une portion des Carpathes Internes, le massif du Bükk (Nord-est de la Hongrie), (stratigraphie, structures, métamorphisme et géodinamique). Ph. D. thesis, University Lille Flandres-Artois, no. 250

  • Csontos L (1999) Structural outline of the Bükk Mts. (N Hungary). Földtani Közlöny 129(4):611–651 (in Hungarian with English abstract).

    Google Scholar 

  • Csontos L (2000) Stratigraphic reevaluation of the Bükk Mts (N. Hungary). Földtani Közlöny 130:95–131 (in Hungarian with English abstract).

    Google Scholar 

  • Csontos L, Nagymarosy A (1998) The Mid-Hungarian line: a zone of repeated tectonic inversion. Tectonophysics 297:51–72

    Article  Google Scholar 

  • Csontos L, Vörös A (2004) Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeogr Palaeoclimatol Palaeoecol 210:1–56

    Article  Google Scholar 

  • Dallmeyer RD, Neubauer F, Handler R, Fritz H, Müller W, Pana D, Putiš M (1996) Tectonothermal evolution of the internal Alps and Carpathians: Evidence from 40Ar/39Ar mineral and whole-rock data. Eclogae Geol Helv 89:203–227

    Google Scholar 

  • Dallmeyer RD, Neubauer F, Fritz H (2008) The Meliata suture in the Carpathians: regional significance and implications for the evolution of high-pressure wedges within collisional orogens. In: Siegesmund S, Fügenschuh B, Froitzheim N (eds) Tectonic aspects of the Alpine-Dinaride-Carpathian system, Geol Soc, Sp Publ, vol 298, pp 101–115

  • Deák-Kövér S (2012) Structure, metamorphism, geochronology and deformation history of Mesozoic formations in the central Rudabánya Hills. PhD dissertation, Eötvös University, Budapest pp 162

  • Dercourt J, Ricou LE, Adamia S, Csfiszfir G, Funk H, Lefeld J, Rakfs M, Sandulescu M, Tollmann A, Tchoumachenko P (1990) Anisian to Oligoccne paleogeography of the European margin of Tethys (Geneva to Baku). Mém Soc Géol France 154:159–190

    Google Scholar 

  • Đerić N, Gerzina N, Schmid MS (2007) Age of the Jurassic radiolarian chert formation from the Zlatar Mountain (SW Serbia). Ofioliti 32/ 2:101–108

    Google Scholar 

  • Đerić N, Schmid SM, Gerzina N (2012) Middle Jurassic radiolarian assemblages from the sedimentary cover of the Adriatic margin (Zlatar Mountain, SW Serbia). Bull Soc Géol France 183(4):359-368

  • Dimitrijević M (1982) Dinarides: an outline of the tectonics. Earth Evol Sci 1:4–23

    Google Scholar 

  • Dimitrijević MN, Dimitrijević MD, Karamata S, Sudar M, Gerzina N, Kovács S, Dosztály L, Gulácsi Z, Less GY, Pelikán P (2003) Olistostrome/mélanges—an overview of the problems and preliminary comparison of such formations in Yugoslavia and NE Hungary. Slovak Geol Mag 9(1):3–21

    Google Scholar 

  • Dimo-Lahitte A, Monié P, Vergély P (2001) Metamorphic soles from the Albanian ophiolites: petrology, 40Ar/39Ar geochronology, and geodynamic evolution. Tectonics 20:78–96

    Article  Google Scholar 

  • Faryad SW (1995) Phase petrology of mafic blueschists of the Meliata Unit (Western Carpathians)—Slovakia. J Metamorph Geol 13:432–448

    Article  Google Scholar 

  • Faryad SW (1997) Lithology and metamorphism of the Meliata unit high-pressure rocks. In: Grecula P, Hovorka D, Putis M (eds) Geological evolution of the Western Carpathians. Mineralia Slovaka Corp Geocomplex as Geol Surv Slovak Republic, Bratislava, pp 131–144

    Google Scholar 

  • Faryad SW, Henjes-Kunst F (1997) K-Ar and Ar-Ar age constraints of the Meliata blueschist facies rocks, the Western Carpathians (Slovakia). Tectonophysics 280:141–156

    Article  Google Scholar 

  • Faryad SW, Spišiak J, Horváth P, Hovorka D, Dianiška I, Józsa S (2005) Petrological and geochemical features of the Meliata mafic rocks from the sutured Triassic oceanic basin, Western Carpathians. Ofioliti 30:27–35

    Google Scholar 

  • Festa A, Pini GA, Dilek Y, Codegone G (2010a) Mélanges and mélange forming processes: historical overview and new concepts. Int Geol Rev 52:1040–1105

    Article  Google Scholar 

  • Festa A, Pini GA, Dilek Y, Codegone G, Vezzani L, Ghisetti F, Lucente CC, Ogata K (2010b) Peri-Adriatic mélanges and their evolution in the Tethyan realm. Int Geol Rev 52:369–406

    Article  Google Scholar 

  • Fodor L, Radócz GY, Sztanó O, Koroknai B, Csontos L, Harangi SZ (2005) Tectonics, sedimentation and magmatism along the Darnó Zone. Post-Conference Excursion Guide for 3rd Meeting of the Central European Tectonic Studies Group, Felsőtárkány, Hungary. Geolines 19:142–162

    Google Scholar 

  • Frank W, Schlager W (2006) Jurassic strike slip versus subduction in the Eastern Alps. Int J Earth Sci 95:431–450

    Article  Google Scholar 

  • Furnes H, Dilek Y (2017) Geochemical characterization and petrogenesis of intermediate to silicic rocks in ophiolites: a global synthesis. Earth-Sci Rev 166:1–37

    Article  Google Scholar 

  • Furrer H, Schaltegger U, Ovtcharova M, Meister P (2008) U-Pb zircon age of volcaniclastic layers in Middle Triassic platform carbonates of the Austroalpine Silvretta nappe (Switzerland). Swiss J Geosci 101(3):595–603

    Article  Google Scholar 

  • Gawlick H-J, Missoni S (2015) Middle Triassic radiolarite pebbles in the Middle Jurassic Hallstatt Mélange of the Eastern Alps: implications for Triassic-Jurassic geodynamic and palaeogeo-graphic reconstructions of the western Tethyan realm. Facies 61(3):13

    Article  Google Scholar 

  • Gawlick H-J, Frisch W, Hoxha L, Dumitrica P, Krystyn L, Lein R, Missoni S, Schlagintweit F (2008) Mirdita Zone ophiolites and associated sediments in Albania reveal Neotethys Ocean origin. Intern J Earth Sci 9:865–881

    Article  Google Scholar 

  • Gawlick H-J, Missoni S, Schlagintweit F, Suzuki H (2012) Jurassic active continental margin deep-water basin and carbonate platform formation in the north-western Tethyan realm (Austria, Germany). J Alp Geol 54:89–292

    Google Scholar 

  • Gawlick H-J, Sudar MN, Missoni S, Suzuki H, Lein R, Jovanovic D (2017) Triassic—Jurassic geodynamic history of the Dinaric Ophiolite Belt (Inner Dinarides, SW Serbia). J Alpine Geol 55:1–167

    Google Scholar 

  • Goričan S (2012) Mesozoic deep-water basins of the eastern Southern Alps (NW Slovenia). IAS Field Trip Guidebook, pp 101–143

  • Gorton MP, Schandal ES (2000) From continents to Island arcs: a geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks. Can Mineral 38:1065–1073

    Article  Google Scholar 

  • Grad K, Ferjančič L, Buser S, Cimerman F, Doset S, Mioč P, Premru U, Vujič D, Žlebnik L, Žnidarčič M (1974) Basic Geological Map of Former Yugoslavia 1:100000, Sheet L 33–65 Kranj. Institute for Geological and Geophysical Research, Belgrade (in Serbian)

    Google Scholar 

  • Grill J (1988) Jurassic formations of the Rudabánya Mts. Ann Rep Hung Geol Inst 1986:69–103 (in Hungarian with English abstract)

    Google Scholar 

  • Grill J, Kovács S, Less GY, Réti ZS, Róth L, Szentpétery I (1984) Geology and evolutionary history of the Aggtelek-Rudabánya Mountains (in Hungarian). Földtani Kutatás 27:49–56

    Google Scholar 

  • Haas J, Kovács S (2001) The Dinaric–Alpine connection—as seen from Hungary. Acta Geol Hung 44(2–3):345–362

    Google Scholar 

  • Haas J, Kovács S, Krystyn L, Lein R (1995) Significance of Late Permian-Triassic facies zones in terrane reconstructions in the Alpine-North Pannonian domain. Tectonophysics 242:19–40

    Article  Google Scholar 

  • Haas J, Görög Á, Kovács S, Ozsvárt P, Matyók I, Pelikán P (2006) Displaced Jurassic foreslope and basin deposits of Dinaric origin in Northeast Hungary. Acta Geol Hung 49(2):125–163

    Article  Google Scholar 

  • Haas J, Budai T, Csontos L, Fodor L, Konrád G (2010b) Pre-Cenozoic geological map of Hungary 1:500 000. Geological Institute of Hungary, Budapest

    Google Scholar 

  • Haas J, Kovács S, Gawlick H-J, Grădinaru E, Karamata S, Sudar M, Péró CS, Mello J, Polák M, Ogorelec B, Buser S (2011a) Jurassic evolution of the tectonostratigraphic units in the Circum-Pannonian region. Jahrbuch der Geologischen Bundesanstalt 151:281–354

    Google Scholar 

  • Haas J, Kovács S, Pelikán P, Kövér S, Görög Á, Ozsvárt P, Józsa S, Németh N (2011b) Remnants of the accretionary complex of the Neotethys Ocean in Northern Hungary. Földtani Közlöny 141(2):167–196 (in Hungarian with English abstract)

    Google Scholar 

  • Haas J, Pelikán P, Görög Á, Józsa S, Ozsvárt P (2013) Stratigraphy, facies and geodynamic setting of Jurassic formations in the Bükk Mountains, North Hungary: its relation with the other areas of the Neotethyan realm. Geol Mag 150:18–49

    Article  Google Scholar 

  • Haas J, Budai T, Csontos L, Fodor L, Konrád GY, Koroknai B (2014) Geology to the pre-Cenozoic basement of Hungary. Explanatory notes of the “Pre-Cenozoic geological map of Hungary” (1: 500 000). Geological and Geophysical Institute of Hungary, Budapest

    Google Scholar 

  • Haas J, Budai T, Dunkl I, Farics É, Józsa S, Kövér S, Götz AE, Piros O, Szeitz P (2017) The Budaörs-1 well revisited: contributions to the Triassic stratigraphy, sedimentology, and magmatism of the southwestern part of the Buda Hills. Cent Eur Geol. https://doi.org/10.1556/24.60.2017.008

    Article  Google Scholar 

  • Handy MR, Schmid SM, Bousque R, Kissling E, Bernoulli D (2010) Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological–geophysical record of spreading and subduction in the Alps. Earth Sci Rev 102:121–158

    Article  Google Scholar 

  • Héja G, Kövér Sz, Csillag G, Németh A, Fodor L (2018) Evidences for pre-orogenic passive-margin extension in a Cretaceous fold-and-thrust belt on the basis of combined seismic and field data (western Transdanubian Range, Hungary). Int J Earth Sci (accepted)

  • Ivan P (2002) Relics of the Meliata Ocean crust: geodynamic implications of mineralogical, petrological and geochemical proxies. Geol Carpath 53(4):245–256

    Google Scholar 

  • Janák M, Plašienka D, Frey M, Cosca M, Schmidt ST, Lupták B, Méres Š (2001) Cretaceous evolution of a metamorphic core complex, the Veporic unit, Western Carpathians (Slovakia): P–T conditions and in situ 40Ar/39Ar UV laser probe dating of metapelites. J Met Geol 19:197–216

    Article  Google Scholar 

  • Kázmér M, Kovács S (1985) Permian-Paleogene Paleogeography along the Eastern part of the Insubric-Periadriatic Lineament system: evidence for continental escape of the Bakony-Drauzug Unit. Acta Geol Hung 28:71–84

    Google Scholar 

  • Kiss G, Molnár F, Palinkaš LA, Kovács S, Hrvatović H (2012) Correlation of Triassic advanced rifting related Neotethyan submarine basaltic volcanism of the Darnó Unit (NE Hungary) with some Dinaridic and Hellenidic occurrences on the basis of volcanological, fluid-rock interaction and geochemical characteristics. Int J Earth Sci 101(6):1503–1521

    Article  Google Scholar 

  • Klötzli U, Klötzli E, Günes Z, Košler J (2009) External accuracy of laser ablation U-Pb zircon dating: results from a test using five different reference zircons. Geostand Geoanal Res 33(1):5–15

    Article  Google Scholar 

  • Kohút M, Hofmann M, Havrila M, Linnenmann U (2017) Tracking an upper limit of the “Carnian Crisis” and/or Carnian stage in the Western Carpathians (Slovakia). Int J Earth Sci. https://doi.org/10.1007/s00531-017-1491-8

    Article  Google Scholar 

  • Kovács S (1988) Olistostromes and other deposits connected to subaqueous mass-gravity transport in the North Hungarian Paleo–Mesozoic. Acta Geol Hung 31(3–4):265–287

    Google Scholar 

  • Kovács S (2010) Type section of the Triassic Bódvalenke Limestone Formation (Rudabánya Hills, NE Hungary)—the northwesternmost occurrence of a Neotethyan deep water facies. Cent Eur Geol 53(1):121–133

    Article  Google Scholar 

  • Kovács S, Less GY, Piros O, Réti ZS, Róth L (1989) Triassic formations of the Aggtelek-Rudabánya Mts. (Northeastern Hungary). Acta Geol Hung 32:31–63

    Google Scholar 

  • Kovács S, Haas J, Ozsvárt P, Palinkaš LA, Kiss G, Molnár F, Józsa S, Kövér S (2010) Re-evaluation of the Mesozoic complexes of Darnó Hill (NE Hungary) and comparisons with Neotethyan accretionary complexes of the Dinarides and Hellenides—preliminary data. Cent Eur Geol 53(2–3):205–231

    Article  Google Scholar 

  • Kovács S, Sudar M, Gradinaru E, Gawlick H-J, Karamata S, Haas J et al (2011) Triassic evolution of the tectonostratigraphic units of the circum-pannonian region. Jahrbuch der Geologischen Bundesanstalt 151:201–228

    Google Scholar 

  • Kövér SZ, Fodor L, Judik K, Németh T, Balogh K, Kovács S (2009a) Deformation history and nappe stacking in Rudabánya Hills (Inner Western Carpathians) unravelled by structural geological, metamorphic petrological and geochronological studies. Geodin Acta 22:3–29

    Article  Google Scholar 

  • Kövér SZ, Haas J, Ozsvárt P, Görög Á, Götz AE, Józsa S (2009b) Lithofacies and age data of Jurassic foreslope and basin sediments of Rudabánya Hills (NE Hungary) and their tectonic interpretation. Geol Carpath 60(5):351–379

    Article  Google Scholar 

  • Kozur H (1991) The evolution of the Meliata-Hallstatt ocean and its significance for the early evolution of the Eastern Alps and Western Carpathians. Palaegeogr Palaeoclimatol Palaeoecol 87(1–4):109–135

    Article  Google Scholar 

  • Kozur H, Mock R (1985) Erster Nachweis von Jura in der Meliata-Einheit der südlichen Westkarpaten. Geol Paläont Mitt Innsbruck 13(10):223–238

    Google Scholar 

  • Kozur H, Mock R (1997) New palaeographic and tectonic interpretations in the Slovakian Carpathians and their implications for correlation with the Easten Alps and other parts of the Western Tethys. Part II: inner Western Carpathians. Mineralia Slovaca 29(3):164–209

    Google Scholar 

  • Kozur H, Mock R, Ožvoldová L (1996) New biostratigraphic results in the Meliaticum in its type area around Meliata village (Slovakia) and their tectonic and paleogeographic significance. Geol Paläont Mitt Innsbruck 21:89–121

    Google Scholar 

  • Lačný A, Plašienka D, Vojtko R (2016) Structural evolution of the Turňa Unit constrained by fold and cleavage analyses and its consequences for the regional tectonic models of the Western Carpathians. Geol Carpath 67(2):177–193

    Article  Google Scholar 

  • Langone A, Zanetti A, Daczko NR, Piazolo S, Tiepolo M, Mazzucchelli M (2018) Zircon U-Pb dating of a lower crustal shear zone: a case study from the Northern sector of the Ivrea-Verbano Zone (Val Cannobina, Italy). Tectonics 37(1):322–342

    Article  Google Scholar 

  • Leško B, Varga I (1980) Alpine elements in the West Carpathian structure and their significance. Miner Slovaca 12(2):97–130

    Google Scholar 

  • Less GY (2000) Polyphase evolution of the structure of the Aggtelek–Rudabánya Mountains (NE Hungary), the southernmost element of the Inner Western Carpathians—a review. Slovak Geol Mag 6(2–3):260–268

    Google Scholar 

  • Less G, Mello J (eds) (2004) Geological map of the Gemer-Bükk area 1:100000. Geol Inst of Hungary, Budapest

    Google Scholar 

  • Less Gy, Grill J, Gyuricza Gy, Róth L, Szentpétery I (1988) Pre-quaternary geological map of the Aggtelek-Rudabánya Hills 1:25 000. Geological Institute of Hungary

  • Lexa O, Schulmann K, Jezek J (2003) Cretaceous collision and indentation in the Western Carpathians: view based on structural analysis and numerical modelling. Tectonics 22 Art. No. 1066

  • Ludwig KR (2003) Isoplot/Ex 3.00: a geochronological toolkit for Microsoft Excel. Berkeley Geochronol Center Spec Publ 4:70

    Google Scholar 

  • Maffione M, Thieulot C, van Hinsbergen DJJ, Morris A, Plumper O, Spakman W (2015) Dynamics of intra-oceanic subduction initiation. 1: Oceanic detachment fault inversion and the formation of forearc ophiolites. Geochem Geophys Geosyst. https://doi.org/10.1002/2015GC005746

    Article  Google Scholar 

  • Majoros P (2008) Az Aggtelek–Rudabányai-és Bükk–hegység jura koru vulkanitjainak cirkonmorfológiai vizsgálata. MSc thesis, Department of Mineralogy and Petrology, University of Miskolc (In Hungarian)

  • Maluski H, Rajlich P, Matte P (1993) 40Ar/39Ar dating of the Inner Carpathians Variscan basement and Alpine mylonitic overprint. Tectonophysics 223:313–337

    Article  Google Scholar 

  • Máthé Z, Szakmány G (1990) The genetics (formation) of rhyolite occurring in the Rudabánya Mts. (Northeastern Hungary). Acta Miner-Petrogr Szeged 30:81–92

    Google Scholar 

  • McDonough WF, Sun SS (1995) Composition of the earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Mello J (1979) Meliata sequence in the Turna tectonic window. Geol Práce 72:61–76

    Google Scholar 

  • Mello J, Elečko M, Pristaš J, Reichwalder P, Snopko D, Vass D, Vozárová A (1996) Geological map of the Slovenský Kras Mts., 1:50000. Geol. Survey of the Slovak Republic, Bratislava

    Google Scholar 

  • Mello J, Reichwalder P, Vozárová A (1998) Bôrka nappe: high-pressure relic from the subduction-accretion prism of the Meliata ocean (Inner Western Carpathians, Slovakia). Slovak Geol Mag 4:261–273

    Google Scholar 

  • Méres Š, Ivan P, Konečný P, Aubrecht R, Sýkora M, Plašienka D, Reichwalder P (2013) Two monazite ages from the accretionary prism mélange of the Meliata Ocean (Bôrka Nappe, Meliatic Superunit, Western Carpathians). In Broska I, Tomašových A (eds) Geological evolution of the Western Carpathians: new ideas in the field of inter-regional correlations. Abstract Book, Internat. Conference GEEWEC 2013, Smolenice, Slovak Republic, October 16–19, 2013. Geol. Inst. SAS, Bratislava, pp 58–59

  • Mock R, Sykora M, Aubrecht R, Ozvoldová L, Kronome B, Reichwalder P, Jablonsky J (1998) Petrology and stratigraphy of the Meliaticum near the Meliata and Jaklovce Villages, Slovakia. Slovak Geol Mag 4:223–260

    Google Scholar 

  • Mundil R, Brack P, Meier M, Rieber H, Oberli F (1996) High resolution U-Pb dating of Middle Triassic volcaniclastics: time-scale calibration and verification of tuning parameters for carbonate sedimentation. Earth Planet Sci Lett 141:137–151

    Article  Google Scholar 

  • Németh K, Budai T (2009) Diatremes cut through the Triassic carbonate platforms in the Dolomites? Evidences from and around the Latemar, Northern Italy. Episodes 32(2):74–83

    Google Scholar 

  • Neubauer F, Liu X, Borojevic Sostaric S, Friedl G, Heberer B, Dong Y (2014) U-Pb zircon ages of Middle-Upper Triassic magmatism in Southern Alps and NW Dinarides: implications for the Southeast Mediterranean tectonics. Proceedings of the XXth Congress of the CBGA, vol 2. Tirana, Albania, Buletini I Shkencave Gjeologjike

  • Ortner H (2017) Geometry of growth strata in wrench dominated transpression: 3D model of the Upper Jurassic Trattberg rise, Northern Calcareous Alps, Austria. Geophys Res Abstracts 19. EGU 2017 T9222

  • Pálfy J, Parrish RR, David K, Vörös A (2003) Mid-Triassic integrated U–Pb geochronology and ammonoid biochronology from the Balaton Highland (Hungary). J Geol Soc London 160:271–284

    Article  Google Scholar 

  • Pamič J, Lovrič A (1980) Geological and isotope ages of the rift magmatien of the Mesozoic Wilson cycle in the Dinarides. Symposium de Géologie Régionale et Paléontologie—Institut de Géologie Régional et de Paléontologie, Faculté des Mines et de Geologie Universite de Belgrade, pp 251–274

  • Pelikán P, Less GY, Kovács S, Pentelényi L, Sásdi L (2005) Geology of the Bükk Mountains. Explanatory Book to the Geological Map of the Bükk Mountains (1:50000). Geological Institute of Hungary, Budapest

    Google Scholar 

  • Plašienka D (1997) Cretaceous tectonochronology of the Central Western Carpathians (Slovakia). Geol Carpath 48:99–111

    Google Scholar 

  • Plašienka D (1998) Paleotectonic evolution of the Central Western Carpathians during the Jurassic and Cretaceous. In: Rakús M (ed) Geodynamic development of the Western Carpathians. Geol Survey of Slovak Republic, Bratislava, pp 107–130

    Google Scholar 

  • Plašienka D, Grecula P, Putiš M, Hovorka D, Kováč M (1997) Evolution and structure of the Western Carpathians: an overview. In: Grecula P, Hovorka D, Putiš M (eds) Geological evolution of the western carpathians. Mineralica Slovaca Monograph, Bratislava, pp 1–24

    Google Scholar 

  • Pleničar M, Ogorelec B, Novak M (2009) The geology of Slovenia. Geoloski zavod Slovenije, Ljubljana

    Google Scholar 

  • Schmid SM, Bernoulli D, Fügenschuh B, Matenco L, Schefer S, Schuster R, Tischler M, Ustaszewski K (2008) The Alpine-Carpathian-Dinaric orogenic system: correlation and evolution of tectonic units. Swiss J Geosci 101:139–183

    Article  Google Scholar 

  • Schmidt T, Blau J, Kázmér M (1991) Large-scale displacement of the Drauzug and the Transdanubian Mountains in early Alpine history: evidence from Permo-Mesozoic facies belts. Tectonophysics 200:213–232

    Article  Google Scholar 

  • Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala B, Turbett MN, Whitehouse MJ (2008) Plešovice, a new natural reference material for U–Pb and Hf isotopic analysis. Chem Geol 249:1–35

    Article  Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet Sci Lett 196(1–2):17–33

    Article  Google Scholar 

  • Stüwe K, Schuster R (2010) Initiation of subduction in the Alps: Continent or ocean? Geology 38:175–178

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc London Spec Pub 42(1):313–345

    Article  Google Scholar 

  • Sylvester PJ, Ghaderi M (1997) Trace element analysis of scheelite by excimer laser ablation-inductively coupled plasma mass spectrometry (ELA-ICPMS) using a synthetic silicate glass standard. Chem Geol 141:49–65

    Article  Google Scholar 

  • Szakmány Gy, Máthé Z, Réti Zs (1989) The position and petrochemistry of the rhyolite in the Rudabánya Mts. (NE Hungary). Acta Mineral Petrogr (30):81–92

    Google Scholar 

  • Velledits F (2006) Evolution of the Bükk Mountains (NE Hungary) during the Middle–Late Triassic asymmetric rifting of the Vardar-Meliata branch of the Neotethys Ocean. Int J Earth Sci 95(3):395–412

    Article  Google Scholar 

  • Vörös A (2010) Late Anisian Ammonoidea from Szár-hegy (Rudabánya Mts); a Dinaric-type fauna from North Hungary. Fragmenta Palaeontol Hung 28:1–20

    Google Scholar 

  • Wolff R, Dunkl I, Kiesselbach G, Wemmer K, Siegesmund S (2012) Thermochronological constraints on the multiphase exhumation history of the Ivrea-Verbano Zone of the Southern Alps. Tectonophysics 579:104–117

    Article  Google Scholar 

  • Wotzlaw JF, Brack P, Storck JC (2018) High-resolution stratigraphy and zircon U–Pb geochronology of the Middle Triassic Buchenstein Formation (Dolomites, northern Italy): precession-forcing of hemipelagic carbonate sedimentation and calibration of the Anisian–Ladinian boundary interval. J Geol Soc 175: 71–85

    Article  Google Scholar 

  • Zelenka T, Baksa CS, Balla Z, Földessy J, Földessy-Járányi K (1983) The role of the Darnó Line in the basement structure of Northeastern Hungary. Geologicky Zbornik Geol Carpath 34(1):53–69

    Google Scholar 

Download references

Acknowledgements

Sampling, U–Pb, and geochemical measurements were supported by the Hungarian National Science Fund (OTKA) grant number K 113013 and Slovenian CEEPUS scholarship of Sz. Kövér. Useful comments and questions of Dušan Plašienka and an anonymous reviewer highly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szilvia Kövér.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kövér, S., Fodor, L., Kovács, Z. et al. Late Triassic acidic volcanic clasts in different Neotethyan sedimentary mélanges: paleogeographic and geodynamic implications. Int J Earth Sci (Geol Rundsch) 107, 2975–2998 (2018). https://doi.org/10.1007/s00531-018-1638-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-018-1638-2

Keywords

Navigation