Skip to main content
Log in

The role of precursory structures on Tertiary deformation in the Black Forest—Hegau region

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Structural inheritance of preexisting crustal discontinuities is widely accepted to have played a crucial role during the Cenozoic tectonic evolution of the northern Alpine foreland. It is recognised as a process that can strongly influence local fault kinematics and strain patterns. The case study presented herein is dedicated to the tectonic analysis of the Freiburg–Bonndorf–Bodensee Fault Zone (FBBFZ) located at the external margin of the northern Alpine Molasse Basin and extending into the crystalline Black Forest Massif. The structure and kinematics of this crustal-scale fault zone are investigated by means of a regional analysis of locally mapped faults, kinematic analysis of outcrop-scale fractures and slip vector modelling. The exceptional possibility of analysing the fault zone exposed from basement to cover allowed for an evaluation of interaction between precursory structures and subsequent deformation features. The results of this study show that the crystalline basement structures exposed along the FBBFZ had a strong imprint on the map-scale fault pattern observable in the Mesozoic and Tertiary sequences. Kinematic analysis of outcrop-scale fracture systems in the latter units yields evidence for local multi-directional extension and strike-slip faulting during Miocene to recent times. While these observations may evoke the interpretation of a multistage palaeostress history along the FBBFZ, slip vector modelling of a very well exposed FBBFZ segment suggests that the various strain records can alternatively be explained by one single regional stress tensor and be related to superordinate deep-seated strike-slip deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Angelier J (1994) Fault slip analysis and palaeostress reconstruction. In: Hancock PL (ed) Continental deformation. Pergamon Press, Oxford, pp 53–100

    Google Scholar 

  • Angelier J, Mechler P (1977) Sur une méthode graphique de recherche des constraintes principales également utilisable en tectonique et en séismologie: la méthode des dièdres droits. Bulletin de la Société Géologique de France XIX(7):1309–1318

    Article  Google Scholar 

  • Bangert V (1991) Blatt 8115 Lenzkirch. Geologische Karte von Baden-Württemberg 1:25 000, Erläuterungen: p 132

  • Bartlett WL, Friedman M, Logan JM (1981) Experimental folding and faulting of rocks under confining pressure Part IX. Wrench faults in limestone layers. Tectonophysics 79(3):255–277

    Article  Google Scholar 

  • Birkhäuser P, Roth P, Naef H et al (2001) 3D-Seismik: Räumliche Erkundung der mesozoischen Sedimentschichten im Zürcher Weinland. Nagra Technical Report, NTB 00–03, Wettingen, p 158

  • Bott MHP (1959) The mechanics of oblique slip faulting. Geol Mag 96(02):109–117

    Article  Google Scholar 

  • Bourgeois O, Ford M, Diraison M et al (2007) Separation of rifting and lithospheric folding signatures in the NW-Alpine foreland. Int J Earth Sci 96(6):1003–1031

    Article  Google Scholar 

  • Carlé W (1955) Bau und Entwicklung der südwestdeutschen Grossscholle. Geologisches Jahrbuch, Beihefte 16:272

    Google Scholar 

  • Cloetingh S, Cornu T, Ziegler PA et al (2006) Neotectonics and intraplate continental topography of the northern Alpine Foreland. Earth Sci Rev 74:127–196

    Article  Google Scholar 

  • Deichmann N, Ballarin Dolfin D, Kastrup U (2000) Seismizitat der Nord- und Zentralschweiz. NAGRA NTB00–05, p 93

  • Demoulin A, Launoy T, Zippelt K (1998) Recent crustal movements in the southern Black Forest (western Germany). Geol Rundsch 87(1):43–52

    Article  Google Scholar 

  • Diebold P, Noack T (1997) Late Palaeozoic troughs and Tertiary structures in the eastern folded Jura. In: Pfiffner OA, Lehner P, Heitzmann P et al (eds) Deep Structure of the Swiss Alps: results of NRP 20. Birkhäuser, Basel, Switzerland, pp 59–63

    Google Scholar 

  • Freudenberg H (1940) Eine Kartierung der Bewegungsspuren im obersten Höllental (Schwarzwald). Geol Rundsch 31(3–4):285–293

    Article  Google Scholar 

  • Frieg B, Grob H, Hertrich M et al (2015) Novel approach for the exploration of the Muschelkalk Aquifer in Switzerland for the CO2-free production of vegetables. In: Conference Abstract: Proceedings World Geothermal Congress 2015, Melbourne, Australia, 19–25 April 2015

  • Geyer M, Nitsch E, Simon T (2011) Geologie von Baden-Württemberg. Schweizerbartsche Vlgsb, p 627

  • Güldenpfennig M, Loeschke J (1991) Petrographie und Geochemie unterkarbonischer Grauwacken und Vulkanite der Zone von Badenweiler-Lenzkirch und der Umgebung von Präg. Jahreshefte des Geologischen Landesamts Baden-Württemberg 33:5–32

    Google Scholar 

  • Hancock PL, Barka AA (1987) Kinematic indicators on active normal faults in Western Turkey. J Struct Geol 9(5):573–584

    Article  Google Scholar 

  • Heidbach O, Reinecker J (2013) Analyse des rezenten Spannungsfelds der Nordschweiz. NAGRA NAB12-05, p 146

  • Heidbach O, Tingay M, Barth A et al (2008) The World Stress Map database release 2008. doi:10.1594/GFZ.WSM.Rel2008

  • Heuberger S, Roth P, Zingg O, Naef H, Meier B (2016) The St. Gallen Fault Zone: a long lived, multiphase structure in the North Alpine Foreland Basin revealed by 3D seismic data. Swiss J Geosci 109:83–102

    Article  Google Scholar 

  • Hinsken S, Ustaszewski K, Wetzel A (2007) Graben width controlling syn-rift sedimentation. The Palaeogene southern Upper Rhine Graben as an example. Int J Earth Sci 96:979–1002

    Article  Google Scholar 

  • Hofmann F, Schlatter R, Weh M (2000) Blatt 1011 Beggingen (Südhälfte) mit SW-Anteil von Blatt 1012 Singen. Swisstopo, Wabern, p 113

    Google Scholar 

  • Homberg C, Hu J-C, Angelier J, Bergerat F, Lacombe O (1997) Characterization of stress perturbations near major fault zones: insights from field studies (Jura Mountains) and numerical modelling. J Struct Geol 19(5):703–718

    Article  Google Scholar 

  • Ibele T (2015) Tectonics of the Hegau and Lake Constance region: a synthesis based on existing literature. Nagra working report, NAB 12–23, Wettingen, p 70

  • Illies H (1972) The Rhine Graben rift system—plate tectonics and transform faulting. Geophys Surv 1:27–60

    Article  Google Scholar 

  • Interreg_IIIA (2007) Alpenrhein Bodensee Hochrhein, Projekt “Grenzüberschreitende Bewirtschaftung des Grundwassers im Raum Hegau—Schaffhausen”

  • Lacombe O, Angelier J, Byrne D et al (1993) Eocene-Oligocene tectonics and kinematics of the Rhine-Saone continental transform zone (eastern France). Tectonics 12:874–888

    Article  Google Scholar 

  • Laubscher HP (1970) Grundsätzliches zur Tektonik des Rheingrabens. In: Illies H, Mueller S (eds) Graben Problems. Proceedings of an International Rift Symposium held in Karlsruhe 1968, International Upper Mantle Project. Schweitzerbart’sche, Stuttgart,p 79–86

  • Link K (2010) Die thermo-tektonische Entwicklung des Oberrheingraben-Gebietes seit der Kreide, p 373

  • Lippolt HJ, Gentner W, Wimmenauer W (1963) Altersbestimmungen nach der Kalium-Argon-Methode an tertiären Eruptivgesteinen Südwestdeutschlands. Jahreshefte des Geologischen Landesamts Baden-Württemberg 6:507–538

    Google Scholar 

  • Lopes Cardozo GGO, Behrmann JH (2006) Kinematic analysis of the Upper Rhine Graben boundary fault system. J Struct Geol 28(6):1028–1039

    Article  Google Scholar 

  • Madritsch H (2015) Outcrop-scale fracture systems in the Alpine foreland of central northern Switzerland: kinematics and tectonic context. Swiss J Geosci 108(2):155–181

    Article  Google Scholar 

  • Madritsch H, Kounov A, Schmid SM et al (2009) Multiple fault reactivations within the intra-continental Rhine-Bresse transfer zone (La Serre Horst, eastern France). Tectonophysics 471(3–4):297–318

    Article  Google Scholar 

  • Malz A, Madritsch H, Meier B et al (2016) An unusual triangle zone in the external northern Alpine foreland (Switzerland): structural inheritance, kinematics and implications for the development of the adjacent Jura fold-and-thrust belt. Tectonophysics 670:127–143

    Article  Google Scholar 

  • Marchant R, Ringgenberg Y, Stampfli G et al (2005) Palaeotectonic evolution of the Zürcher Weinland (northern Switzerland) based on 2D and 3D seismic data. Eclogae Geol Helv 98(3):345–362

    Article  Google Scholar 

  • Marrett R, Allmendinger RW (1990) Kinematic analysis of fault-slip data. J Struct Geol 12(8):973–986

    Article  Google Scholar 

  • Mazurek M, Hurford AJ, Leu W (2006) Unravelling the multi-stage burial history of the Swiss Molasse Basin: integration of apatite fission track, vitrinite reflectance and biomarker isomerisation analysis. Basin Res 18:27–50

    Article  Google Scholar 

  • Meier B, Kuhn P, Roth P et al (2014) Tiefenkonvertierung der regionalen Strukturinterpretation der Nagra 2D-Seismik 2011/12. Nagra Working Report, NAB 14-34, Wettingen, p 45

  • Morris A, Ferrill DA, Henderson DB (1996) Slip-tendency analysis and fault reactivation. Geology 24(3):275–278

    Article  Google Scholar 

  • Müller WH, Naef H, Graf HR (2002) Geologische Entwicklung der Nordschweiz, Neotektonik und Langzeitszenarien Zürcher Weinland. Nagra Technical Report, NTB 99-08, Wettingen, p 237

  • Naef H, Birkhäuser P, Roth P (1995) Interpretation der Reflexionsseismik im Gebiet nördlich Lägeren—Zürcher Weinland. NAGRA Technical Report, NTB94-14, Wettingen, p 120

  • Nagra (2008) Vorschlag geologischer Standortgebiete für das SMA- und das HAA-Lager Geologische Grundlagen, Textband. Nagra Technical Report, NTB08-04, Wettingen, p 439

  • Ortner H, Reiter F, Acs P (2002) Easy handling of tectonic data: the programs TectonicVB for Mac and TectonicsFP for Windows(TM). Comput Geosci 28(10):1193–1200

    Article  Google Scholar 

  • Paul W (1948) Beiträge zur Tektonik und Morphologie des mittleren Schwarzwaldes und seiner Ostabdachung. Mitteilungen der Badischen Geologischen Landesanstalt, pp 45–49

  • Pavoni N (1977) Erdbeben im Gebiet der Schweiz. Eclogae Geol Helv 70:351–370

    Google Scholar 

  • Pfiffner OA, Erard P, Stäuble M (1997) Two cross sections through the Swiss Molasse Basin (lines E4–E6, W1, W7–W10). In: Pfiffner OA, Lehner P, Heitzmann P et al (eds) Deep Structure of the Swiss Alps: Results of NRP 20. Birkhäuser, Basel, Switzerland, pp 64–72

    Google Scholar 

  • Rahn MK, Selbekk R (2007) Absolute dating of the youngest sediments of the Swiss Molasse basin by apatite fission track analysis. Swiss J Geosci 100(3):371–381

    Article  Google Scholar 

  • Regelmann C, Regelmann K (1921) Erläuterungen zur elften Auflage der Geologischen Uebersichtskarte von Württemberg und Badem, dem Elsass. der Pfalz und den weiterhin angrenzenden Gebieten. Württ, Statistisches Landesamt

    Google Scholar 

  • Reicherter K, Froitzheim N, Jarosinski M et al (2008) Alpine tectonics north of the Alps. In: McCann T (ed) The geology of Central Europe, pp 1233–1285

  • Reinecker J, Schneider G (2002) Zur Neotektonik der Zollernalb: der Hohenzollerngraben und die Albstadt-Erdbeben. Jahresberichte und Mitteilungen oberrheinischer geologischer Verein 84:391–417

    Article  Google Scholar 

  • Reiter F, Acs P (1996–2011) Tectonics FP 1.75 Computer Software for Structural Geology. Operating Manual

  • Rupf I, Nitsch E (2008) Das Geologische Landesmodell von Baden-Würtemberg: Datengrundlage, technische Umsetzung und erste geologische Ergebnisse. Landesamt für Geologie, Rohstoffe und Bergbau Baden-Würtemberg—Informationen 21: p 82

  • Sawatzki G (2005) Blatt 8215 Ühlingen-Birkendorf. Geologische Karte von Baden-Württemberg 1:25 000, Erläuterungen, p 106

  • Sawatzki G, Hann HP (2003) Badenweiler-Lenzkirch-Zone (Südschwarzwald). Geologische Karte von Baden-Württemberg 1:50 000, Erläuterungen: p 182

  • Schaltegger U (2000) U-Pb geochronology of the Southern Black Forest Batholith (Central Variscan Belt): timing of exhumation and granite emplacement. Int J Earth Sci 88:814–828

    Article  Google Scholar 

  • Schmidle W (1911) Zur Kenntnis der Molasse und der Tektonik am nordwestlichen Bodensee. Zeitschrift der deutschen geologischen Gesellschaft 63(1):522–551

    Google Scholar 

  • Schmidle W (1918) Die Stratigraphie der Molasse und der Bau des Ueberlinger- und Unterseebeckens. Schriften des Vereins für Gesichte des Bodensees und seiner Umgebung 47:63–83

    Google Scholar 

  • Schneider G (1979) The Earthquake in the Swabian Jura of 16 November 1911 and present concepts of seismotectonics. Tectonophysics 53:279–288

    Article  Google Scholar 

  • Schneider G (1993) Beziehungen zwischen Erdbeben und Strukturen der Süddeutschen Grossscholle. Neues Jahrbuch der Geologie und Paleontologie Abhandlungen 189(1–3):275–288

    Google Scholar 

  • Schreiner A (1989) Blatt 8219 Singen. Geologische Karte von Baden-Württemberg 1:25 000, Erläuterungen, p 139

  • Schreiner A (1992) Hegau und westlicher Bodensee. Geologische Karte von Baden-Württemberg 1:50 000, Erläuterungen, p 290

  • Schreiner A (1995) Blatt 8218 Gottmadingen. Geologische Karte von Baden-Württemberg 1:25 000, Erläuterungen, p 142

  • Schumacher ME (2002) Upper Rhine Graben: role of preexisting structures during rift evolution. Tectonics 21(1):6-1–6-17

    Article  Google Scholar 

  • Schwarz HU (2012) Das Schwäbisch-Fränkische Bruchmuster. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 163(4):411–446

    Article  Google Scholar 

  • Sommaruga A, Eichenberger U, Marillier F (2012) Seismic Atlas of the Swiss Molasse Basin. Swisstopo

  • Stange S, Brüstle W (2005) The Albstadt/Swabian Jura seismic source zone reviewed through the study of the earthquake of March 22, 2003. Jahresberichte und Mitteilungen oberrheinischer geologischer Verein N.F. 87:391–414

    Article  Google Scholar 

  • Stange S, Strehlau J (2002) Fault plane solutions of upper and lower crustal earthquakes under the central Molasse basin: evidence of a composite stress field? Conference abstract, 62. Annual Meeting of DGG, March 2002, Hannover

  • Wallace RE (1951) Geometry of shearing stress and relation to faulting. J Geol 59(2):118–130

    Article  Google Scholar 

  • Weiskirchner W (1972) Einführung zur Exkursion Hegau. Fortschritte in der Mineralogie, 50, Beiheft 2:70–84

    Google Scholar 

  • Werner W, Franzke HJ (2001) Postvariszische bis neogene Bruchtektonik und Mineralisation im südlichen Zentralschwarzwald. Zeitschrift der deutschen geologischen Gesellschaft 152(2–4):405–437

    Google Scholar 

  • Willett SD, Schlunegger F (2010) The last phase of deposition in the Swiss Molasse Basin: from foredeep to negative-alpha basin. Basin Res 22:623–639

    Article  Google Scholar 

  • Wimmenauer W (1974) The alkaline province of central Europe and France. In: Sorensen H (ed) The Alkaline Rocks. Wiley, London, pp 238–271

    Google Scholar 

  • Ziegler PA (1992) European Cenozoic rift system. Tectonophysics 208:91–111

    Article  Google Scholar 

  • Ziegler PA, Dèzes P (2007) Cenozoic uplift of Variscan Massifs in the Alpine foreland: timing and controlling mechanisms. Glob Planet Chang 58(1–4):237–269

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Swiss National Science Foundation (SNF Projects 200021_144145 and 200020_156252) with kind support of the Swiss National Cooperative for the Disposal of Radioactive Waste (NAGRA). NAGRA’s permission to publish parts of the 2D reflection seismic profile 91-NO-79 is particularly acknowledged. We thank K. Reicherter and H. Ortner for critical, yet constructive reviews and W.-Chr. Dullo (Chief Editor, IJES) for the support and manuscript handling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Egli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egli, D., Mosar, J., Ibele, T. et al. The role of precursory structures on Tertiary deformation in the Black Forest—Hegau region. Int J Earth Sci (Geol Rundsch) 106, 2297–2318 (2017). https://doi.org/10.1007/s00531-016-1427-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-016-1427-8

Keywords

Navigation