Skip to main content

Advertisement

Log in

Identification of maars and similar volcanic landforms in the West Eifel Volcanic Field through image processing of DTM data: efficiency of different methods depending on preservation state

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The West Eifel Volcanic Field comprises 98 maars, tuff rings, and scoria rings of volcanoes younger than 700 ka. Digital Terrain Models (DTMs) allow to automatically measure morphologic parameters of volcanic edifices such as slope angles, diameters, elevations, floor, and slope surface areas. Based on their morphological characteristics, we subdivided the West Eifel volcanoes into five morphometric groups which reflect different stages of erosion. Group I, II, and IV comprise clear ring-shaped structures. The difference between these groups is that a tephra ring is well preserved in Group I, partially preserved in Group II and absent in Group IV. The original shapes of Group III maars have been lost more substantially than in Groups I, II, or IV, but they nevertheless retain a negative shape (a depression) and have characteristic channel systems, which can be used as search criteria. Maar-diatremes of Group V are eroded down to their feeder pipes and form hills. In order to locate potential volcanic depressions that are likely to be maar volcanoes, we defined common search criteria such as circular negative landforms or particular drainage system patterns for all groups except the least well-preserved Group V. These criteria were taken as the basis for further processing of the DTM data. The first processing step consisted of constructing a residual relief calculated as the difference between a filtered (smoothed) topographic surface and the original DTM data. This identifies local topographic features. We propose a method for regulating the degree of smoothing which is based on filtering of local maxima according to their distance from a surface constructed from local minima. The previously defined search criteria for Groups I to IV such as specific ranges of curvature, slope, circularity, density of the drainage network were then applied to the residual relief in order to extract maar shapes. Not all criteria work equally well for all morphological groups. Combinations of multiple search criteria therefore yield the best results and efficiently identify most known maars. They also separate some probable new, hitherto unrecognized maars from a large number of other local depressions. We also compared the erosional state of maars to their absolute ages. Published estimates of erosion rates for maars in the French Massif Central suggest a general trend of erosion rates decreasing with time elapsed since eruption. However, this cannot explain the strongly varying ages for maars of the same morphometric group (i.e., similar preservation state) in the West Eifel Volcanic Field. The spatial distribution of the morphometric groups shows some regularity. For example, strongly eroded maars are concentrated in the Gerolstein area (where maar density is highest), whereas most well-preserved maars are located east of the Eifel North–South Depression (ENSD). Most maars affected by fluvial erosion lie near the Kyll and Kleine Kyll streams. These observations suggest differential recent uplift of the West Eifel Volcanic Field, with stronger uplift occurring west of the ENSD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Beget JE, Hopkins DM, Charron SD (1995) The largest maars on Earth, Seward Peninsula, northwest Alaska. Arctic 49:62–69

    Google Scholar 

  • Büchel G (1987) Geophysik der Eifelmaare. 1: Erkundung neuer Maare im Vulkanfeld der Eifel mit Hilfe geomagnetischer Untersuchungen. Mainzer geowiss Mitt 16:227–274, 36 Abb.; Mainz

  • Büchel G (1992) Das Kelberger Hoch. Tiefenstruktur und Geodynamik einer magnetischen Anomalie in der Eifel. Die Geowissenschaften 5:132–142

  • Büchel G (1993) Maars of the Westeifel, Germany. In: Negendank JFW, Zolitschka B (eds) Paleolimnology of European maar lakes. Lecture notes in earth sciences, vol 49. Springer, Berlin, pp 1–13

    Chapter  Google Scholar 

  • Büchel G (1994) Vulkanologische Karte der West- und Hocheifel 1:50.000, Koblenz (Landesvermessungsamt Rheinland-Pfalz)

  • Büchel G, Lorenz V (1982) Zum Alter des Maarvulkanismus der Westeifel (The age of the West Eifel Maar volcanism). Neues Jahrbuch für Geologie und Paläontologie 163(1):1–22

    Google Scholar 

  • Büchel G, Mertes H (1982) Die Eruptionszentren des Westeifeler Vulkanfeldes (The eruption centers of the West Eifel Volcanic Field). Zeitschrift der Deutschen Gesellschaft Geowissenschaften 133:409–429

    Google Scholar 

  • Büchel G, Pirrung M (1993) Tertiary maars of the Hocheifel Volcanic Field, Germany. In: Negendank JWF, Zolitschka B (eds) Lecture notes in earth sciences. Paleolimnology of European Maar Lakes, vol 49. Springer, Berlin, pp 447–465

    Chapter  Google Scholar 

  • Bundesanstalt für Geowissenschaften und Rohstoffe (2003) Bearbeitungsstand. Digitale Geowissenschaftliche Karte der Bundesrepublik Deutschland. Grundlage: Geologische Karte der Bundesrepublik Deutschland 1:1 000 000 von Voges A et al (1993) Hannover

  • Burbank DW, Anderson RS (2001) Tectonic geomorphology. Blackwell Science, Oxford, p 274

    Google Scholar 

  • Cas RAF, Hayman P, Pittari A, Porritt L (2008) Some major problems with existing models and terminology associated with kimberlite pipes from a volcanological perspective, and some suggestions. J Volcanol Geotherm Res 174:209–225

    Article  Google Scholar 

  • Degeai J-P (2004) Mesure de l’érosion post-éruptive autour des cratères de maars en inversion de relief dans le Massif Central français./Post-eruptive erosion measurement around the inverted maar craters in the French Massif Central. Géomorphologie: relief, processus, environnement 4:285–304

    Article  Google Scholar 

  • Evans IS (1979) An integrated system of terrain analysis and slope mapping. Final report on grant DA-ERO-591-73-G0040, University of Durham, England

  • Fekiacova ZD, Mertz F, Renne PR (2007) Geodynamic setting of the Tertiary Hocheifel volcanism (Germany), Part I: 40Ar/39Ar geochronology. In: Ritter JRR, Christensen UR (eds) Mantle Plumes—a multidisciplinary approach. Springer, Heidelberg, pp 185–206

    Google Scholar 

  • Franz G, Breitkreuz C, Coyle DA, El Hur B, Heinrich W, Paulick H, Pudlo D, Smith R, Steiner G (1997) The alkaline Meidob volcanic field (Late Cenozoic, northwest Sudan). J Afr Earth Sci 25:263–291

    Article  Google Scholar 

  • Garcia-Castellanos D, Cloetingh S, Van Balen R (2000) Modelling the Middle Pleistocene uplift in the Ardennes-Rhenish Massif: thermo-mechanical weakening under the Eifel? Glob Planet Change 27(1–4):39–52

    Article  Google Scholar 

  • Garcin Y, Williamson D, Taieb M, Vincens A, Mathe PE, Majule A (2006) Centennial to millennial changes in maar-lake deposition during the last 45.000 years in tropical Southern Africa (Lake Masoko, Tanzania). Palaeogeogr Palaeoclimatol Palaeoecol 239:334–354

    Article  Google Scholar 

  • Grohmann C, Riccomini C, Alves F (2007) SRTM-based morphotectonic analysis of the Poços de Caldas Alkaline Massif, southeastern Brazil. Comput Geosci 33(1):10–19

    Article  Google Scholar 

  • Hanson EK (2007) Estimating erosion of Cretaceous-aged kimberlites in the Republic of South Africa through the examination of upper-crustal xenoliths. Unpublished MSc thesis, Rhodes University, South Africa, p 138

  • Hesse G (2000) Hydrogeologische Erkundung von Maar-Diatrem-Vulkanen am Beispiel des Geeser Maares (Westeifel). Unpublished PhD thesis, Friedrich-Schiller Universität Jena, p 135

  • Huckenholz HG, Büchel G (1988) Tertiärer Vulkanismus der Hocheifel. Fortschr Miner 66(2):43–82

    Google Scholar 

  • Illies H, Prodehl C, Schmincke HU, Semmel A (1979) The quaternary uplift of the rhenish shield in Germany. Tectonophysics 61:197–225

    Article  Google Scholar 

  • Kamenetsky MB, Sobolev AV, Kamenetsky VS, Maas R, Danyushevsky LV, Thomas R, Pokhilenko NP, Sobolev NV (2004) Kimberlite melts rich in alkali chlorides and carbonates: a potent metasomatic agent in the mantle. Geology 32:845–848

    Article  Google Scholar 

  • Lorenz V (1973) On the formation of maars. Bull Volcanol 37(2):138–204

    Article  Google Scholar 

  • Lorenz V (1975) Formation of phreatomagmatic maar-diatreme volcanoes and its relevance to kimberlite diatremes. Phys Chem Earth 9:17–27

    Article  Google Scholar 

  • Lorenz V (1986) On the growth of maars and diatremes and its relevance to the formation of tuff-rings. Bull Volcanol 48:265–274

    Article  Google Scholar 

  • Lorenz V (2003) Maar-diatreme volcanoes, their formation, and their setting in hard-rock or soft-rock environments. GeoLines J Geol Inst AS Czech Repub 15:72–83

    Google Scholar 

  • Lorenz V (2007) Syn- and posteruptive hazards of maar-diatreme volcanoes. J Volcanol Geotherm Res 159(1–3):285–312

    Article  Google Scholar 

  • Lorenz V, Büchel G (1980) Die Kesseltäler der vulkanischen Westeifel; Nachweis ihrer Maargenese. Mainzer Geowiss Mitt 8:173–191

    Google Scholar 

  • Lorenz V, Kurszlaukis S (2007) Root zone processes in the phreatomagmatic pipe emplacement model and consequences for the evolution of maar-diatreme volcanoes. J Volcanol Geotherm Res 159:4–32

    Article  Google Scholar 

  • Lustrino M, Carminati E (2007) Phantom plumes in Europe and neighbouring areas: In: Foulger GR, Jurdy DM (eds) Plates, plumes, and planetary processes. Geol. Soc. Am. Spec. paper 430, pp 723–746

  • Martin U, Németh K, Lorenz V, White JDL (2007) Introduction: Maar-diatreme volcanism. J Volcanol Geotherm Res 159(1–3):1–3. doi:10.1016/j.jvolgeores.2006.06.003

    Google Scholar 

  • Martín-Serrano A, Vegas J, García-Cortés A, Galán L, Gallardo-Millán JL, Martín-Alfageme S, Rubio FM, Ibarra PI, Granda A, Pérez-González A, García-Lobón JL (2009) Morphotectonic setting of maar lakes in the Campo de Calatrava Volcanic Field (Central Spain, SW Europe). Sediment Geol 222:52–63

    Article  Google Scholar 

  • May F (2005) Alteration of wall rocks by CO2-rich water ascending in fault zones: natural analogues for reactions induced by CO2 migrating along faults in siliciclastic reservoir and cap rocks. Oil Gas Sci Technol. Rev IFP 60(1):19–32. doi:10.2516/ogst:2005003

  • May F, Hoernes S, Neugebauer H (1996) Genesis and distribution of mineral waters as a consequence of recent lithospheric dynamics: the Rhenish Massif, Central Europe. Geol Rundsch 85:782–799

    Article  Google Scholar 

  • Mertes H (1983) Aufbau und Genese des Westeifeler Vulkanfeldes. Bochum Geol u Geotechn Arb Bochum 9:1–415

    Google Scholar 

  • Mertes H, Schmincke H-U (1985) Mafic potassic lavas of the Quaternary West Eifel Volcanic Field. I. Major and trace elements. Contrib Mineral Petrol 89:330–345

    Article  Google Scholar 

  • Meyer W (1994) Geologie der Eifel. 3. Aufl. Schweizerbart′sche Verlagsbuchhandlung, Stuttgart, p 615

  • Meyer W, Stets J (2002) Pleistocene to recent tectonics in the Rhenish Massif (Germany). Neth J Geosci/Geologie en Mijnbouw 81:217–221

    Google Scholar 

  • Moss S, Russell JK, Andrews GDM (2008) Spatio-temporal evolution of kimberlite magmas at Diavik, NWT. In: 9th International Kimberlite conference. Extended abstract 9IKC-A-00302

  • Németh K (2001) Long-term erosion-rate calculation from the Waipiata Volcanic Field (New Zealand) based on erosion remnants of scoria cones, tuff rings and maars. Géomorphologie: relief, processus, environnement (Paris-Lyon) 2:137–152

    Article  Google Scholar 

  • Németh K (2003) Calculation of long-term erosion in Central Otago, New Zealand, based on erosional remnants of maar/tuff rings. Zeitschrift für Geomorphologie NF 47:29–49

    Google Scholar 

  • Németh K, Cronin SJ (2007) Syn- and post-eruptive erosion, gully formation, and morphological evolution of a tephra ring in tropical climate erupted in 1913 in West Ambrym, Vanuatu. Geomorphology 86:115–130

    Article  Google Scholar 

  • Németh K, Martin U (1999) Late Miocene paleo-geomorphology of the Bakony-Balaton Highland Volcanic Field (Hungary) using physical volcanology data. Zeitschrift für Geomorphologie 43:417–438

    Google Scholar 

  • Németh K, White JDL (2003a) Geochemical evolution, vent structures, and erosion history of small-volume volcanoes in the Miocene Intracontinental Waipiata Volcanic Field, New Zealand. Geolines J AS Czech Repub (Proceedings for the Hibsch 2002 Prague meeting on “Alkaline basaltic continental rift related magmatism”) 15:63–69

  • Németh K, White JDL (2003b) Reconstructing eruption processes of a Miocene monogenetic volcanic field from vent remnants: Waipiata Volcanic Field, South Island, New Zealand. J Volcanol Geotherm Res 124:1–21

    Article  Google Scholar 

  • Németh K, Martin U, Csillag G (2003) Calculation of erosion rates based on remnants of monogenetic alkaline basaltic volcanoes in the Bakony-Balaton Highland Volcanic Field (Western Hungary) of Mio/Pliocene age. Geolines 15:93–97

    Google Scholar 

  • Nowell DAG, Jones MC, Pyle DM (2006) Episodic Quaternary volcanism in France and Germany. J Quat Sci 21(6):645–675

    Article  Google Scholar 

  • Pirrung M, Fischer C, Büchel G, Gaupp R, Lutz H, Neuffer F-O (2003) Lithofacies succession of maar crater deposits in the Eifel area (Germany). Terra Nova 15:125–132

    Article  Google Scholar 

  • Pirrung M, Büchel G, Lorenz V, Treutler H (2008) Post-eruptive development of the Ukinrek East Maar since its eruption in 1977 A.D. in the periglacial area of south-west Alaska. Sedimentology 55(2):305–334

    Article  Google Scholar 

  • Roberts A (2001) Curvature attributes and their interpretation to 3D interpreted horizons. First Break 19:85–100

    Article  Google Scholar 

  • Ross P-S, Delpit S, Haller MJ, Németh K, Corbella H (2010) Influence of the substrate on maar-diatreme volcanoes—an example of a mixed setting from the Pali Aike volcanic field, Argentina. J Volcanol Geotherm Res 20(1–4):253–271

    Google Scholar 

  • Russell JK, Moss S (2006) Volatiles and kimberlite eruption: insights from Diavik. Kimberlite emplacement workshop, long abstract, p 5

  • Schaber K, Sirocko F (2005) Lithologie und Stratigraphie der spätpleistozänen Trockenmaare der Eifel. Mainzer Geowiss Mitt 33:295–340

    Google Scholar 

  • Schäfer A, Utescher T, Klett M, Valdivia-Manchego M (2005) The Cenozoic Lower Rhine Basin—rifting, sedimentation, and cyclic stratigraphy. Int J Earth Sci 94:621–639

    Article  Google Scholar 

  • Schmincke H-U (2004) Volcanism. Springer, Heidelberg, pp 1–324

    Book  Google Scholar 

  • Schmincke H-U (2007) The Quaternary Volcanic Fields of the East and West Eifel (Germany). In: Ritter JRR, CUR (eds) Mantle Plumes—a multidisciplinary approach. Springer, Berlin, pp 241–322. doi:10.1007/978-3-540-68046-8_8

  • Schmincke H-U (2010) Vulkanismus (Volcanism). Wissenschaftliche Buchgesellschaft, Darmstadt. ISBN 978-3-534-23628-2

  • Schulz R, Buness H, Gabriel G, Pucher R, Rolf C, Widerhold H, Wonik T (2005) Detailed investigation of preserved maar structures by combined geophysical surveys. Bull Volcanol 68:95–106. doi:10.1007/s00445-005-0424-8

    Article  Google Scholar 

  • Seib N, Kley J, Torizin E, Zander I, Goepel A, Büchel G (2008) Identifikation vulkanischer Formen in einem digitalen Geländemodell (DGM) der Westeifel (Identification of volcanic landforms in a Digital Terrain Model (DTM) of the Westeifel). Zeitschrift der Deutschen Gesellschaft Geowissenschaften 159(4):657–670

    Article  Google Scholar 

  • Shaw CSJ, Eyzaguirre J, Fryer B, Gagnon J (2005) Regional variations in the mineralogy of metasomatic assemblages in mantle xenoliths from the West Eifel Volcanic Field, Germany. J Petrol 46:945–972

    Article  Google Scholar 

  • Smith BHS, Berryman AK (2007) Reply to discussion of “Geology and diamond distribution of the 140/141 kimberlite, Fort a la Corne, central Saskatchewan, Canada” by Berryman AK, Scott Smith BH and Jellicoe BC Lithos 76:99–114, by Kjarsgaard BA, Leckie DA and Zonneveld JP. Lithos 97:429–434

  • Sorohtin OG (1985) Tectonica litosphernyh plit i proishojdenie almasonosnyh kimberlitov (Tectonic of the lithospheric plates and origin of diamonds kimberlites) Obschaia i regionalnaia geologia; geologicheskoe kartirovanie, p 48, (in Russian) Moscow. MG USSR, AWUSSR

  • Sorohtin OG, Ushakov SA (2002) Development of the Earth. Moscow University, Moscow, p 506 (in Russian). http://macroevolution.narod.ru/sorohtin.htm

  • Stachel T, Büchel G (1989) Das Döttinger Maar: Fallstudie eines großen tertiären (?) Tuffschlotes im Vulkanfeld der Hocheifel. (The Döttingen Maar: Case study of a large Tertiary (?) diatreme of the Hocheifel Volcanic Field.). Zeitschrift der Deutschen Gesellschaft Geowissenschaften 140:35–51

    Google Scholar 

  • Strahler AN (1952) Hypsometric (area-altitude) analysis of erosional topology. Geol Soc Am Bull 63(11):1117–1142. doi:10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2

    Article  Google Scholar 

  • Strahler AN (1957) Quantitative analysis of watershed geomorphology. Trans Am Geophys Union 8(6):913–920

    Google Scholar 

  • Straka H (1975) Die spätquartäre Vegetationsgeschichte der Vulkaneifel. Pollenanalytische Untersuchungen an vermoorten Maaren. (The late Quaternary vegetation history of the volcanic Eifel. Pollen analyses of marshy maars). In: Landesamt für Umweltschutz Rheinland-Pfalz (ed) Beiträge zur Landespflege in Rheinland Pfalz. 3, Oppenheim, p 163

  • Suhr P, Goth K, Lorenz V, Suhr S (2006) Long lasting subsidence and deformation in and above maar-diatreme volcanoes a never ending story. Zeitschrift der Deutschen Gesellschaft Geowissenschaften 157(3):491–511

    Article  Google Scholar 

  • Viereck L (1984) Geologische und petrologische Entwicklung des pleistozänen Vulkankomplexes Rieden, Ost-Eifel. Bochumer Geol Geotechn Arb 17:1–337

    Google Scholar 

  • Walters AL, Phillips JC, Brown RJ, Field M, Gernon T, Stripp G, Sparks RSJ (2006) The role of fluidisation in the formation of volcaniclastic kimberlite: grain size observations and experimental investigation. J Volcanol Geotherm Res 1–2:119–137

    Article  Google Scholar 

  • White JDL, Ross PS (2011) Maar-diatreme volcanoes: a review. J Volcanol Geotherm Res 201:1–29

    Article  Google Scholar 

  • Wilson M, Downes H (1991) Tertiary-Quaternary extension related alkaline magmatism in western and central Europe. J Petrol 32:811–849

    Article  Google Scholar 

  • Wilson L, Head JW (2007) An integrated model of kimberlite ascent and eruption. Nature 47(7140):53–57. doi:10.1038/nature05692

    Article  Google Scholar 

  • Wood CA (1974) Reconnaissance geophysics and geology of Pinacate Craters, Sonora, Mexico. Bull Volcanol 38:149–172

    Article  Google Scholar 

  • Wood JD (1996) The geomorphological characterisation of digital elevation models. PhD thesis, University of Leicester, UK. http://www.soi.city.ac.uk/~jwo/phd, http://sideshow.jpl.nasa.gov/mbh/series.html

  • Ziegler PA, Dèzes P (2007) Cenozoic uplift of Variscan Massifs in the Alpine foreland: timing and controlling mechanisms. Glob Planet Change 58(1–4):237–269

    Article  Google Scholar 

  • Zolitschka B, Lottermoser JFW, Negendank Lottermoser BG (1995) Sedimentological proof and dating of the Early Holocene volcanic eruption of Ulmener Maar (Vulkaneifel, Germany). Geol Rundsch 84(1):213–219

    Article  Google Scholar 

  • Zăvoianu I (1985) Morphometry of drainage basins/Ion Zăvoianu; [translated from the Romanian by Adriana Ionescu-Pârâu]. Elsevier, p 238. ISBNs: 0444995870, 9780444995872

Download references

Acknowledgments

We thank Jutta Winsemann and Ulrich Asprion (Hannover) and Lothar Ratschbacher (Freiberg) for helpful discussions and suggestions and for the possibility to work on this paper. Mathias Leidig and Richard Gloaguen (Freiberg) helped with all kinds of computer problems. Michael Pirrung read an earlier version of the manuscript and gave us many helpful hints. We are also grateful to Peter Frenzel for his feedback and adjustments. Many thanks to Károly Németh for his detailed and thoughtful review and to editor-in-chief Wolf-Christian Dullo for his assistance. They all helped us to substantially improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadine Seib.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seib, N., Kley, J. & Büchel, G. Identification of maars and similar volcanic landforms in the West Eifel Volcanic Field through image processing of DTM data: efficiency of different methods depending on preservation state. Int J Earth Sci (Geol Rundsch) 102, 875–901 (2013). https://doi.org/10.1007/s00531-012-0829-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-012-0829-5

Keywords

Navigation