Skip to main content
Log in

Detailed investigation of preserved maar structures by combined geophysical surveys

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The detection of completely preserved maar structures is important not only for underground mapping but also for paleoclimate research because laminated maar lake sediments may contain a very detailed archive of climate history. Objective evidence for the existence of such structures can only be provided by geophysics and boreholes. The combination of gravity and magnetic ground surveys appears to be an excellent tool to detect and identify buried maar structures. Their prominent properties are an almost circular gravity minimum corresponding to a crater filled with limnic sediments of low density, and a magnetic anomaly caused by a pyroclastic or basaltic body in the diatreme which indicates the volcanic character. Seismic measurements provide the most detailed information about the internal structure of the maar sediments. Zones of low seismic reflectivity and very low density represent sediments of the late maar-lake period. The early lake period is indicated by debris flow deposits and turbidites represented by seismic reflectors. The seismic sections clearly reveal the bowl-like structure of the maar. Outside this bowl-like structure, there are only a few reflections, which represent the basement. Taking into account the shape of the gravity anomaly, seismic information allows geometrical modelling of the maar structure. Optimal drilling sites can be selected based on the results of geophysical surveying. Comparing the results of combined geophysical surveys above two maar structures of different ages yields a marked similarity in their geophysical pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5:
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Brunner I, Friedel S, Jacobs F, Danckwardt E (1999) Investigation of a Tertiary maar structure using three-dimensional resistivity imaging. Geophys J Int 136:771–780

    Article  Google Scholar 

  • Büchel G (1993) Maars of the Westeifel, Germany. In: Negendank JFW (ed) Paleolimnology of European maar lakes. Lecture Notes Earth Sci 49. Springer, Berlin Heidelberg New York, pp 1–13

    Chapter  Google Scholar 

  • Buness H, Wiederhold H (1999) Experiences with a vibrator system for shallow high-resolution seismics. 61st Meet Eur Assn Geosci Eng: 4042

    Google Scholar 

  • Felder M, Harms F-J (2004) Lithologische Beschreibung, Gliederung und genetische Interpretation der zentralen Forschungsbohrung Messel 2001, der randlichen Inklinometerbohrung IN 28 sowie einiger älterer Bohrungen in der Grube Messel. Courier Forschungsinstitut Senckenberg 252:151–203; Schweizerbart, Stuttgart

    Google Scholar 

  • Fisher RV, Schmincke HU (1984) Pyroclastic rocks. Springer, Berlin Heidelberg New York, pp 1–472

    Google Scholar 

  • Gabriel G (2003) Lokale gravimetrische Untersuchungen in der Oberpfalz zum Nachweis von Maar-Vorkommen. Geologica Bavarica 107:231–234

    Google Scholar 

  • Goth K, Schulz R, Suhr P (2003) Das Maar von Baruth (Sachsen). Z Angew Geol 1/2003:2–9

    Google Scholar 

  • Harms F-J (2000) On the origin of the Messel Pit and other oil shale deposits on the Sprendlinger Horst, Southern Hessen. Terra Nostra 2000/6:160–164

    Google Scholar 

  • Jacoby W, Wallner H, Smilde P (2000) Eocene tectonics and volcanism around Messel: reactivated fault zones, pull-apart and maar formation. Terra Nostra 2000/6:195–2004

    Google Scholar 

  • Lorenz V (1986) On the growth of maars and its relevance to the formation of tuff-rings. Bull Volcanol 48:265–274

    Article  Google Scholar 

  • Lorenz V (2000) Formation of maar-diatreme volcanoes. Terra Nostra 2000/6:284–291

    Google Scholar 

  • Lorenz V, Suhr P, Goth K (2003) Maar-diatreme volcanism—causes and consequences, the Guttau Volcano in eastern Saxony as an example for the complex processes and relationships. Z Geol Wiss 31:267–312

    Google Scholar 

  • Niessen F, Lami A, Guilizzoni P (1993) Climatic and tectonic effects on sedimentation in Central Italian volcano lakes (Latium) - implications from high-resolution seismic profiles. In: Negendank JFW (ed) Paleolimnology of European maar lakes. Lecture Notes Earth Sci 49. Springer, Berlin Heidelberg New York, pp 129–148

    Chapter  Google Scholar 

  • Pirrung M, Fischer C, Büchel G, Gaupp R, Lutz H, Neuffer F-O (2003) Lithofacies succession of maar crater deposits in the Eifel area (Germany). Terra Nova 15:125–132

    Article  Google Scholar 

  • Plaumann S (1991) Die Schwerekarte 1:500 000 der Bundesrepublik Deutschland (Bouguer-Anomalien), Blatt Mitte. Geol Jb E 46:3–16

    Google Scholar 

  • Puchnerová M, Kubeš P, Lanc J, Szalaiová V, Šantavy J, Zbořil L (2000) Results of geophysical exploration of the maar structures in the southern Slovakian Basin. Terra Nostra 2000/6:410–417

    Google Scholar 

  • Rodemann H, Worzyk P (2000) Geoelectrical soundings above a concealed maar - 2-D and 3-D interpretations. Terra Nostra 2000/6:428–433

    Google Scholar 

  • Schaal S, Ziegler W (1992) Messel—An insight into the history of life and of the Earth. Clarendon, Oxford, pp 1–322

    Google Scholar 

  • Schmincke H-U (1988) Vulkane im Laacher See-Gebiet, ihre Entstehung und heutige Bedeutung [Volcanoes in the Laacher Sea area. Their origin and today’s importance]. Bode, Haltern, pp 1–119

    Google Scholar 

  • Schulz R, Harms F-J, Felder M (2002) Die Forschungsbohrung Messel 2001: Ein Beitrag zur Entschlüsselung der Genese einer Ölschieferlager stätte. Z Angew Geol 4/2002:9–17

    Google Scholar 

  • Standke G (1999) Geologische Karte der eiszeitlich bedeckten Gebiete von Sachsen 1:50000, Blatt Niesky (2570). Sächsisches Landesamt für Umwelt und Geologie, Freiberg

    Google Scholar 

  • Suhr P (1999) Phreatomagmatic structures in the northwest environs of the Ohře Rift (Saxony). GeoLines 9:119–122

    Google Scholar 

  • Tóth C (1992) Geophysical prospecting of maar-type basaltic craters in Hungary. 54th Meet Eur Assoc Explor Geophys: 668–669

    Google Scholar 

  • Ulrych J, Pivec E, Lang M, Balogh K, Kopracek V (1999) Cenozoic intraplate volcanic rock series of the Bohemian Massif: a review. GeoLines 9:123–129

    Google Scholar 

  • Wiederhold H (2005) “Poor man’s 3D” - A simple approach to 3D seismic surveying: a case history. In: Butler D (ed) Near-surface geophysics, part II, chapter 30. Spec Publ Soc Explor Geophys, Tulsa, Okla (in press)

    Google Scholar 

  • Wiederhold H, Buness H, Bram K (1998) Glacial structures in northern Germany revealed by a high-resolution shallow reflection survey. Geophysics 63:1265–1272

    Article  Google Scholar 

  • Wohletz KH, Zimanowski B (2000) Physics of phreatomagmatism; Part 1: Explosion physics. Terra Nostra 2000/6:515–523

    Google Scholar 

  • Wood CA (1974) Reconnaissance geophysics and geology of the Pinacate Craters, Sonora, Mexico. Bull Volcanol 38:149–172

    Article  Google Scholar 

  • Zimanowski B, Wohletz KH (2000) Physics of phreatomagmatism; Part 2: Eruption physics. Terra Nostra 2000/6:535–544

    Google Scholar 

Download references

Acknowledgements

We thank P. Suhr, K. Goth (both LfUG Freiberg), H.-J. Harms, M. Felder (both FIS Messel), and V. Lorenz (Würzburg University) for their excellent collaboration and their patience in explaining to us the geology of maar structures. Potential field data in the Messel area were provided by W. Jacoby, H. Wallner and their colleagues and students (Mainz University); we are much obliged to them, also for many helpful discussions. We owe the high quality of the field data, processing and figures to our colleagues in the engineering staff of the GGA-Institute. Reviews by M. Roach and D.B. Stone improved the paper considerably.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger Schulz.

Additional information

Editorial responsibility: J McPhie

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulz, R., Buness, H., Gabriel, G. et al. Detailed investigation of preserved maar structures by combined geophysical surveys. Bull Volcanol 68, 95–106 (2005). https://doi.org/10.1007/s00445-005-0424-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-005-0424-8

Keywords

Navigation