Skip to main content

Advertisement

Log in

Isotopic studies on detrital zircons of Silurian–Devonian siliciclastic sequences from Argentinean North Patagonia and Sierra de la Ventana regions: comparative provenance

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Silurian–Devonian siliciclastic sedimentary units known as Sierra Grande Formation and the upper part of the Ventana Group crop out in the eastern area of the North Patagonian Massif and in the Ventania system, toward the Atlantic border of Argentina. Both sequences show similar stratigraphical characteristics and were deposited in a shallow marine platform paleoenvironment. Previous contributions have provided evidence of an allochthonous Patagonia terrane that amalgamate to Gondwana during the Permian–Triassic. However, other lines of research support a crustal continuity southward, where the Pampean and Famatinian events extend into the northern Patagonia. In either case, the detrital input to the Eo–Mesopaleozoic basins generated along the passive margin tectonic setting should reflect the sedimentary sources. In this contribution, new age data on the sedimentary provenance of these units is provided by U–Pb and Lu–Hf isotopic studies on detrital zircons, using LA-ICP-MS and SHRIMP methodologies. The main sedimentary sources of detrital zircons for both regions are of Cambrian–Ordovician and Neoproterozoic age, while a secondary mode is Mesoproterozoic. Zircons from older cratonic sources (Mesoarchean–Paleoproterozoic ages) are scarcely recorded. The sample from the upper section of the Devonian Lolén Formation (Ventana Group) shows an important change in the sedimentary provenance, with a main mode of Mesoproterozoic detrital zircons. Detrital source areas considering the orogenic cycles known for southwest South America (Famatinian, Pampean–Brasiliano, Mesoproterozoic–‘Grenvillian’ and Paleoproterozoic–‘Transamazonian’) are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abre P, Zimmermann U, Cingolani CA, Cairncross B (2008) Provenance of ordovician to silurian clastic sequences of the Cuyania terrane (Argentina) and its geotectonic implications. 17° Congreso Geológico Argentino, Jujuy 3:1273–1274

    Google Scholar 

  • Adams CJ, Miller H, Toselli A, Griffin WL (2008) The Puncoviscana formation of northwest Argentina: U–Pb geochronology of detrital zircons and Rb–Sr metamorphic ages and their bearing on its stratigraphic age, sediment provenance and tectonic setting. Neues Jahrbuch fur Geologie und Pälaontologie, Abhandlungen 247:341–352

    Article  Google Scholar 

  • Andreis RR (1964a) Estudio de la zona con braquiópodos del grupo de Lolén (Sierra de la Ventana, provincia de Buenos Aires). Comisión Investigaciones Científicas. Provincia de Buenos Aires, Notas 2(5):1–10 (La Plata)

    Google Scholar 

  • Andreis RR (1964b) Petrología del grupo eodevónico de Lolén Sierras Australes (provincia de Buenos Aires). Comisión Investigaciones Científicas. Provincia de Buenos Aires. Anales V:79–124 (La Plata)

    Google Scholar 

  • Avila JC (1982) Problemas geológicos estructurales en la explotación minera de Sierra Grande, provincia de Río Negro. Revista del Instituto de Ciencias Geológicas 5:141–169 (Jujuy)

    Google Scholar 

  • Braitsch O (1965) Das Paleozoikum von Sierra Grande (Prov. Rio Negro, Argentinien) und die altkaledonische faltung im östlichen Andenvorland. Geologische Rundschau 54(2):698–714

    Article  Google Scholar 

  • Busteros A, Giacosa R, Lema, Zubia M (1998) Hoja Geológica 4166-IV, Sierra Grande, Provincia de Río Negro. SEGEMAR 75p

  • Casquet C, Pankhurst RJ, Fanning M, Baldo E, Galindo C, Rapela CW, Casado JMG, Dahlquist JA (2006) U-Pb SHRIMP zircon dating of Grenvillian metamorphism in western Sierras Pampeanas (Argentina): correlation with the Arequipa-Antofalla craton and constraints on the extent of the Precordillera Terrane. Gondwana Res 9(4):524–529

    Article  Google Scholar 

  • Cawood PA (2005) Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth Sci Rev 69:249–279

    Article  Google Scholar 

  • Chu NC, Taylor RN, Chavagnac V, Nesbitt RW, Boella RM, Milton JA, German CR, Bayon G, Burton K (2002) Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. J Anal Atomic Spectrosc 17:1567–1574

    Article  Google Scholar 

  • Cingolani CA, Dalla Salda L (2000) Buenos Aires cratonic region. In: Cordani U, Milani E, Thomaz Filho A, Campos D (eds) Tectonic evolution of South America. 31st International Geological Congress. Rio de Janeiro, pp 139–146

  • Cingolani CA, Varela R (1976) Investigaciones geológicas y geocronológicas en el extremo sur de la isla Gran Malvina, sector Cabo Belgrano (Cabo Meredith), Islas Malvinas. 6° Congreso Geológico Argentino, Buenos Aires, Actas 1:457–474 (Buenos Aires)

    Google Scholar 

  • Cingolani CA, Berry CM, Morel E, Tomezzoli R (2002) Middle Devonian lycopsids from high southern paleolatitudes of Gondwana (Argentina). Geol Mag 139(6):641–649 (Cambridge University Press)

    Article  Google Scholar 

  • Cobbold PR, Massabie AC, Rossello EA (1986) Hercynian wrenching and thrusting in the Sierras Australes foldbelt, Argentina. Hercynica (France) 2:135–148

    Google Scholar 

  • Compston W, Williams IS, Mayer C (1984) U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. In: Proceedings, 14th Lunar Science Conference. Journal of Geophysical Research 89:B252–B534

  • Cordani UG, Sato K, Teixeira W, Tassinari CCG, Basei MAS (2000) Crustal evolution of the South American platform. In: Cordani UG, Milani EJ, Thomaz Filho A, Campos DA (eds) Tectonic evolution of South America. Proceedings of 31st International Geological Congress. Rio de Janeiro, Brazil, pp 19–40

  • Cortés JM, Caminos R, Leanza HA (1984) La cobertura sedimentaria eopaleozoica. Geología y recursos naturales de la Provincia de Río Negro, Relatorio 9° Congreso Geológico Argentino, pp 65–84

  • Dalla Salda LH, Cingolani CA, Varela R (1992) Early Paleozoic orogenic belt of the Andes in southeastern South America: result of Laurentia-Gondwana collision? Geology 20:617–620

    Article  Google Scholar 

  • De Alba E (1964) Descripción geológica de la Hoja 41j “Sierra Grande”, provincia de Río Negro. Carta Geológica y Económica de la República Argentina, Boletín 97, Dirección Nacional de Geología y Minería

  • Dickinson WR, Gehrels GE (2003) U-Pb ages of detrital zircons from Permian and Jurassic eolian sandstones of the Colorado Plateau, USA; paleogeographic implications. Sed Geol 163:29–66

    Article  Google Scholar 

  • Dimieri L, Delpino S, Turienzo M (2005) Estructura de las Sierras Australes de Buenos Aires. Geología y Recursos Naturales de la Provincia de Buenos Aires. Relatorio del XVI Congreso Geológico Argentino, pp 101–117

  • Escayola MP, Pimentel M, Armstrong R (2007) Neoproterozoic backarc basin: sensitive high-resolution ion microprobe U-Pb and Sm-Nd isotopic evidence from the Eastern Pampean Ranges, Argentina. Geology 35:495–498

    Article  Google Scholar 

  • Flowerdew MJ, Millar IL, Curtis ML, Vaughan APM, Horstwood MSA, Whitehouse MJ, Fanning CM (2007) Combined U-Pb geochronology and Hf isotope geochemistry of detrital zircons from early Paleozoic sedimentary rocks, Ellsworth-Whitmore mountains block, Antarctica. Geol Soc Am Bull 119:275–288

    Article  Google Scholar 

  • Gerdes A, Zeh A (2006) Combined U-Pb and Hf isotope LA-(MC-) ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an armorican metasediment in Central Germany. Earth Planet Sci Lett 249:47–62

    Article  Google Scholar 

  • Gregori DA, López VL, Grecco LE (2005) A Late Proterozoic–Early Paleozoic magmatic cycle in Sierra de la Ventana, Argentina. J S Am Earth Sci 19:155–171

    Article  Google Scholar 

  • Gregori DA, Kostadinoff J, Strazzere L, Raniolo A (2008) Tectonic significance and consequences of the Gondwanide orogeny in northern Patagonia, Argentina. Gondwana Res 14(3):429–450

    Article  Google Scholar 

  • Harrington HJ (1947) Explicación de las hojas 33 m y 34 m, Sierras de Curamalal y de la Ventana, Provincia de Buenos Aires. Boletín Dirección Nacional de Geología y Minería 61:43

    Google Scholar 

  • Harrington HJ (1970) Las Sierras Australes de la Provincia de Buenos Aires, República Argentina. Cadena aulacogénica. Revista de la Asociación Geológica Argentina 25:151–181

    Google Scholar 

  • Harrington HJ (1972) Sierras Australes de la Provincia de Buenos Aires. In: Leanza A (ed) 1° Simposio de Geología Regional Argentina. Academia Nacional de Ciencias de Córdoba, pp 395–404

  • Harrington HJ (1980) Sierras Australes de la provincia de Buenos Aires. Segundo Simposio de Geología Regional Argentina. Academia Nacional de Ciencias, Córdoba 2:967–983

    Google Scholar 

  • Huber-Grünberg A (1990) Sedimentologie, Fazies und Herkunft der kambrisch/ordovizischen und silurisch/unterdevonischen Einheiten von Sierra Grande, Patagonien. Dissertation University of Munich, 196 pp

  • Iizuka T, Hirata T (2005) Improvements of precision and accuracy in in situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique. Chem Geol 220:121–137

    Article  Google Scholar 

  • Johnson MR, Anhaeusser CR, Thomas RJ (2006) The Geology of South Africa. Geological Society of South Africa, Johannesburg/Council of Geoscience, Pretoria

    Google Scholar 

  • Keidel J (1916) La geología de las sierras de la provincia de Buenos Aires y sus relaciones con las Montañas del Cabo y de los Andes Dirección de Minería y Agricultura. Sección Geología Anales 11(3):5–77 (Buenos Aires)

    Google Scholar 

  • Klammer G (1964) Die Palaeozoischen Eisenerze von Sierra Grande, Argentinien. Zeitschrift Erzbergban und Metallhuttenweser 17(10):534–541

    Google Scholar 

  • Leal PR, Hartmann LA, Santos JOS, Miró RC, Ramos VA (2003) Volcanismo postorogénico en el extremo norte de las Sierras Pampeanas Orientales: Nuevos datos geocronológicos y sus implicancias tectónicas. Revista de la Asociación Geológica Argent 58(4):593–607

    Google Scholar 

  • Lesta P, Sylwan C (2005) Cuenca de Claromecó. In: Chebli GA, Cortiñas JS, Spalletti LA, Legarreta L, Vallejo EL (eds) Frontera exploratoria de la Argentina 6° Congreso de Exploración y Desarrollo de Hidrocarburos 10:217–231 (Mar del Plata)

  • López Gamundi O (2006) Permian plate margin volcanism and tuffs in adjacent basins of west Gondwana: age constraints and common characteristics. J S Am Earth Sci 22:227–238

    Article  Google Scholar 

  • Ludwig KR (2001) Using Isoplot/Ex. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication 1, Version 2.49, 2455 Ridge Road, Berkeley

  • Ludwig KR (2003) Isoplot 3.00: special publication 4. Berkeley Geochronology Center, Berkeley

    Google Scholar 

  • Manceñido M, Damborenea S (1984) Megafauna de invertebrados paleozoicos y mesozoicos. In: Ramos V (ed) Geología y Recursos Naturales de la Provincia de Río Negro: IX. Congreso Geológico Argentino, Bariloche, Relatorio, pp 413–466

  • Massabie A, Rossello E (1984) Estructuras deformativas en el Abra de la Ventana y adyacencias. Sierras Australes de Buenos Aires, Primera Reunión Sobre Microtectónica, Actas, pp 22–25

  • Massabie A, Rossello E, López Gamundí OR (2005) Cubierta Paleozoica-Mesozoica de las Sierras Australes de la Provincia de Buenos Aires. Geología y Recursos Naturales de la Provincia de Buenos Aires. Relatorio del XVI Congreso Geológico Argentino, pp 85–100

  • Max MD, Ghidella M, Kovacs L, Paterlini J, Valladares JA (1999) Geology of the Argentine continental shelf and margin from aeromagnetic survey. Mar Pet Geol 16:41–64

    Article  Google Scholar 

  • Milani EJ (2007) The Paraná Basin: a multi-cycle sedimentary and magmatic intracratonic province of W Gondwana. In: Problems in Western Gondwana Geology, I workshop, Gramado, Brazil, extended abstracts 1:99–107

  • Müller H (1965) Zur altersfrage der Eisenerzlagerstatte Sierra Grande/Río Negro in Nordpatagonien aufgrund neuer fossilfunde. Geologische Rundschau 54(2):715–732

    Article  Google Scholar 

  • Naipauer M, Sato AM, González PD, Chemale F Jr, Varela R, Llamabías EJ, Greco GA, Dantas E (2010) Eopaleozoic Patagonia-East Antartica connection: Fossil and U-Pb evidence from El Jagüelito formation. VII South American Symposium on Isotope Geology, pp 602–605 (Brasília)

  • Núñez E, Bachmann EW, Ravazzoli I, Britos A, Franchini M, Lizuaín A, Sepúlveda E (1975) Rasgos geológicos del sector oriental del Macizo de Somuncurá, provincia de Río Negro, República Argentina. II Congreso Iberoamericano de Geología Económica 4:247–266

  • Palma MA (1989) Los eventos geológicos del Macizo del Deseado durante la evolución tectónica del Continente Austral. Actas Reunión sobre Geotransectas de América del Sur, Mar del Plata, pp 97–101

    Google Scholar 

  • Pankhurst RJ, Rapela CW, Fanning CM, Márquez M (2006) Gondwanide continental collision and the origin of Patagonia. Earth Sci Rev 76:235–257

    Article  Google Scholar 

  • Patchett PJ, Kouvo O, Hedge CE, Tatsumoto M (1981) Evolution of continental crust and mantle heterogeneity: evidence from Hf isotopes. Contrib Mineral Petrol 78:279–297

    Article  Google Scholar 

  • Pupin JP (1980) Zircon and granite petrology. Contrib Mineral Petrol 73:207–220

    Article  Google Scholar 

  • Ramos VA (1984) Patagonia: Un continente Paleozoico a la deriva?. 9° Congreso Geológico Argentino. Actas 2:311–325 (Bariloche)

    Google Scholar 

  • Ramos VA (1986) Tectonostratigraphy, as applied to analysis of South African Phanerozoic Basins by H. de la R. Winter, discussion. Trans Geol Soc S Africa 87(2):169–179

    Google Scholar 

  • Ramos VA (1988) Late Proterozoic-Early Paleozoic of South America-a collisional history. Episodes 11:168–174

    Google Scholar 

  • Ramos VA (2002) Evolución tectónica de la Provincia de Santa Cruz. In: Haller MJ (ed) Geología y recursos naturales de Santa Cruz. Relatorio 15° Congreso Geológico Argentino. I-23:365–387 (El Calafate)

  • Ramos VA (2004) Cuyania, an exotic block to Gondwana: review of historical success and the present problems. Gondwana Res 7(4):1009–1026

    Article  Google Scholar 

  • Ramos VA (2008) Patagonia: a Paleozoic continent adrift? J S Am Earth Sci 26(2008):235–251

    Article  Google Scholar 

  • Ramos VA (2009) Anatomy and global context of the Andes: main geologic features and the andean orogenic cycle. In: Kay SM, Ramos VA, Dickinson W (eds) Backbone of the Americas: shallow subduction, plateau uplift, and ridge and terrane collision. Geological Society of America, Memoir 204:31–65

  • Ramos VA, Cortés JM (1984) Estructura e interpretación tectónica. In: Ramos V (ed) Geología y Recursos Naturales de la provincia de Río Negro, IX Congreso Geológico Argentino, Relatorio 1(12):317–346

  • Ramos VA, Kostadinoff J (2005) La cuenca de Claromecó. In: de Barrio RE, Etcheverry RO, Caballé MF, Llambías E (eds) Geología y recursos minerales de la Provincia de Buenos Aires. 16° Congreso Geológico Argentino, Relatorio, pp 473–480

  • Rapalini AE (1989) Dextral transcurrent movements along the northern boundary of Patagonia, suggested by paleomagnetic data. 1st Congress of Brazilian Geophysical Society, Rio de Janeiro. Annals 3:950–955

  • Rapalini AE, Vilas JF (1991) Preliminary paleomagnetic data from the Sierra Grande formation: tectonic consequences of the first mid-Paleozoic paleopoles from Patagonia. J S Am Earth Sci 4(1–2):25–41

    Article  Google Scholar 

  • Rapela CW, Pankhurst RJ, Fannig CM, Grecco LE (2003) Basement evolution of the Sierra de la Ventana fold belt: new evidence for Cambrian continental rifting along the southern margin of Gondwana. J Geol Soc Lond 160:613–628

    Article  Google Scholar 

  • Rapela CW, Pankhurst RJ, Casquet C, Fanning CM, Baldo EG, Gonzalez-Casado JM, Galindo C, Dahlquist J (2007) The Rio de la Plata craton and the assembly of SW Gondwana. Earth Sci Rev 83:49–82

    Article  Google Scholar 

  • Reinoso M (1968) Paleocorrientes en la Formación Providencia, Devónico, Sierras Australes de la Provincia de Buenos Aires. Revista de la Asociación Geologica Argent 23(4):287–295 (Buenos Aires)

    Google Scholar 

  • Robb LJ, Armstrong RA, Waters DJ (1999) The history of granulite-facies metamorphism and crustal growth from single zircon U-Pb geochronology: Namaqualand, South Africa. J Petrol 40:1747–1770

    Article  Google Scholar 

  • Rodríguez SG (1988) Trazas fósiles en sedimentitas del Paleozoico de las Sierras Australes Bonaerenses. Segunda Jornadas Geológicas Bonaerenses (Bahía Blanca), Actas, pp 117–130

  • Rossello EA, Massabie AC, López-Gamundi OR, Cobbold PR, Gapais D (1997) Late palezoic transpression in Buenos Aires and northeast Patagonia range, Argentina. J S Am Earth Sci 10:389–402

    Article  Google Scholar 

  • Santos JOS, Rizzotto GJ, McNaughton NJ, Matos R, Hartmann LA, Chemale F Jr, Potter PE, Quadros MLES (2008) The age and autochthonous evolution of Sunsás Orogen in West Amazon Craton. Precambr Res 165:120–152

    Article  Google Scholar 

  • Schiller W (1930) Investigaciones Geológicas en las montañas del Sudoeste de la Provincia de Buenos Aires. Anales del Museo de La Plata. Sección Mineralogía y Geología. Segunda Serie, Primera parte 4:101

    Google Scholar 

  • Schwartz JJ, Gromet LP (2004) Provenance of a late Proterozoic-early Cambrian basin, Sierras de Córdoba, Argentina. Precambr Res 129:1–21

    Article  Google Scholar 

  • Simon E, Jackson SE, Pearson NJ, Griffina WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 211:47–69

    Article  Google Scholar 

  • Sims J, Ireland T, Camacho A, Lyons P, Pieters P, Skirrow R, Stuart Smith P, Miró R (1998) U-Pb, Th-Pb and Ar-Ar geochronology from the southern Sierras Pampeanas margin: implications for the Paleozoic tectonic evolution of the western Gondwana. In: Pankhurst RJ, Rapela CW (eds) The Proto-Andean margin of Gondwana. Geological Society of London, Special Publications 142:259–281 (London)

  • Spalletti LA (1993) An iron-bearing wave-dominated siliciclastic shelf: facies analysis and paleogeographic implications (Silurian-Lower Devonian Sierra Grande Formation, Southern Argentina). Geol J 28:137–148

    Article  Google Scholar 

  • Spalletti LA, Cingolani CA, Varela R (1991) Ambientes y procesos generadores de las sedimentitas portadoras de hierro en la plataforma siluro-eodevónica de la Patagonia, República Argentina. Revista Museo de La Plata, nueva serie, sección Geología 10:305–318

    Google Scholar 

  • Stipanicic PN, Methol EJ (1980) Comarca Norpatagónica. In: Geología Regional Argentina. Academia Nacional de Ciencias de Córdoba, pp 1071–1097 (Córdoba)

  • Stipanicic PN, Methol EJ, Rodrigo F, Baulies OL, Martínez CG (1968) Las formaciones presenonianas en el denominado Macizo Nordpatagónico y regiones adyacentes. Revista de la Asociación Geológica Argent 33(2):67–98 (Buenos Aires)

    Google Scholar 

  • Tankard AJ, Welsink H, Aukes P, Newton R, Stettler E (2009) Tectonic evolution of the Cape and Karoo basins of South Africa. Mar Petrol Geol 26(8):1379–1412

    Article  Google Scholar 

  • Thirlwall MF, Walder AJ (1995) In situ hafnium isotope ratio analysis of zircon by inductively coupled plasma multiple collector mass spectrometry. Chem Geol 122:241–247

    Article  Google Scholar 

  • Thomas RJ, Jacobs J, Armstrong RA, Henjes-Kunst F (1998) Geochronology of the Mesoproterozoic Cape Meredith Complex, West Falkland: comparisons with Natal and East Antarctica (Extended Abstract). J Afr Earth Sci 27(1A):194–195

    Google Scholar 

  • Tickyj H, Fernández MA, Chemale Jr F, Cingolani CA (2009) Granodiorita Pampa de los Avestruces, Cordillera Frontal, Mendoza: un intrusivo sintectónico de edad devónica inferior. XIV Reunión de Tectónica, Universidad Nacional de Río Cuarto, Córdoba. Resumenes. p 27

  • Tomezzoli RN, Cristallini EO (2004) Secciones estructurales de las Sierras Australes de la provincia de Buenos Aires: Repetición de la secuencia estratigráfica a partir de fallas inversas? Revista de la Asociación Geológica Argent 59(2):330–340

    Google Scholar 

  • Uriz NJ, Cingolani CA, Chemale Jr F, Armstrong RA (2008a) U-Pb detrital zircon data from the Paleozoic Sierra Grande Formation, North Patagonian Massif, Argentina. VI South American Symposium on Isotope Geology, pp 162–162 (San Carlos de Bariloche)

  • Uriz NJ, Cingolani CA, Chemale Jr F, Macambira MJ (2008b) Edades U-Pb en circones detríticos del Grupo Ventana (provincia de Buenos Aires) y de la Formación Sierra Grande (Macizo Nordpatagónico): Análisis comparativo de procedencia. 17° Congreso Geológico Argentino. Actas II:912–913 (San Salvador de Jujuy)

  • Varela R, Cingolani CA, Sato AM, Dalla Salda L, Brito Neves BB, Basei MAS, Siga Jr O, Teixeira W (1997) Proterozoic and Paleozoic evolution of Atlantic area of North Patagonian Massif Argentine. South American Symposium on Isotope Geology (Sao Paulo/Brazil, 15–18 June 1997). Extended Abstracts, pp 326–329

  • Varela R, Basei MAS, Cingolani CA, Siga O Jr, Passarelli CR (2005) El Basamento Cristalino de los Andes Norpatagónicos en Argentina: geocronologia e interpretación tectónica. Revista Geológica de Chile 32:167–182

    Article  Google Scholar 

  • Varela R, Basei MAS, González P, Sato AM, Sato K (2008) Granitoides Famatinianos y Gondwánicos en Sierra Grande. Nuevas edades radimétricas método U-Pb. 17° Congreso Geológico Argentino. Acta II:914–915 (San Salvador de Jujuy)

  • von Gosen W (2002) Polyphase structural evolution in the northeastern segment of the North Patagonian Massif (southern Argentina). J S Am Earth Sci 15:591–623

    Google Scholar 

  • von Gosen W (2003) Thrust tectonics in the North Patagonian Massif (Argentina). Implications for a Patagonia Plate. Tectonics 22(1):5/1–5/33

    Google Scholar 

  • von Gosen W (2009) Stages of late Palaeozoic deformation and intrusive activity in the western part of the North Patagonian Massif (southern Argentina) and their geotectonic implications. Geol Mag 146(1):48–71

    Article  Google Scholar 

  • von Gosen W, Buggisch W, Krumm S (1991) Metamorphism and deformation mechanisms in the Sierras Australes fold and thrust belt (Buenos Aires Province, Argentina). Tectonophysics 185:335–356

    Article  Google Scholar 

  • Williams IS (1998) U-Th-Pb geochronology by ion microprobe. In: McKibben MA, Shanks WCP III, Ridley WI (eds) Applications of microanalytical techniques to understanding mineralizing processes. Society of Economic Geologists Short Course 7

  • Willner AP, Gerdes A, Massonne HJ (2008) History of crustal growth and recycling at the Pacific convergent margin of South America at latitudes 29°–36°S revealed by a U-Pb and Lu-Hf isotope study of detrital zircon from late Paleozoic accretionary systems. Chem Geol 253(3–4):114–129

    Article  Google Scholar 

  • Woodhead JD, Hergt JM, Shelley M, Eggins S, Kemp R (2004) Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chem Geol 209:121–135

    Article  Google Scholar 

  • Zanettini JCM (1981) La Formación Sierra Grande (provincia de Río Negro). Revista de la Asociación Geológica Argent 36(2):160–179

    Google Scholar 

  • Zanettini JCM (1999) Los depósitos ferríferos de Sierra Grande, Río Negro. In: Zappettini EO (ed) Recursos minerales de la República Argentina. Instituto de Geología y recursos minerales. Servicio Geológico Minero Argentino (SEGEMAR), Anales 35:745–762 (Buenos Aires)

  • Zimmermann U, Spalletti LA (2009) Provenance of the lower Paleozoic Balcarce formation (Tandilia System, Buenos Aires Province, Argentina): Implications for paleogeographic reconstructions of SW Gondwana. Sed Geol 219(1–4):7–23

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially financed by CONICET PIP grants 5027 and 112-00647. The Centro de Investigaciones Geológicas (CIG, La Plata) provided the laboratory facilities for sample preparation. To Prof. K. Kawashita and technical staff of the Laboratorio de Geología Isotópica (Porto Alegre, Brazil), we are grateful for several comments received during the zircon grain preparations and ICP-LA analyses. We wish to specially thank A. Tankard (Canada) and R. Newton (South Africa) for their very relevant comments on different phases of the work that improved the interpretation of results. We would like to thank P. Abre and M. Manassero for partially review of the English of an early version of the manuscript. Many facilities were obtained from the University of La Plata, Argentina, where the PhD thesis of the first author is currently ongoing. We are deeply grateful for the effort made by the reviewers and editors in helping to obtain a better quality manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Cingolani.

Electronic supplementary material

Appendices

Appendix 1

Sierra Grande Formation

The unit is predominantly composed of mature quartz-rich sandstones interlayered with shales, subordinated conglomerates and the classic oolithic iron horizons. The maximum thickness of the unit is about 2,130 m and was subdivided in three members known, from base to top, as Polke, San Carlos and Herrada (Zanettini 1981, 1999). The most abundant lithological type is light-colored, quartz and mica-rich sandstone. However, iron-rich sandstones and wackes are also present. Cross-stratification and ripple-marks were recognized. The quartz-rich sandstone layers can easily be followed in the mountain landscape, being therefore useful as key-levels. Sandstone and interbedded shale colors vary between white, gray and brown, often associated with red oolithic iron-mineralized horizons. The presence of mica-rich sandstones and wackes become more conspicuous toward the western outcrops, near the “Yacimiento Sur” and Loma de los Fósiles (Fig. 3). Conglomerates and coarse facies sandstones occur in the base of the unit at the eastern Atlantic side of the region. The unit was developed in an open marine environment, with shallow deep shelf areas dominated by processes of waves and storms. Offshore sedimentation was governed by conditions of good weather and storms represented by the heterolithic facies (Huber-Grünberg 1990; Spalletti et al. 1991; Spalletti 1993). The environmental characteristics of shallow water and low rate of sedimentation, warmer paleoclimatic conditions and a general high sea level stage favoured the iron concentrations. The coastline would have developed with NW–SE direction (Spalletti 1993). After Rossello et al. (1997), the tectonic evolution can be considered as part of a large-scale intracontinental deformation in SW Gondwana inboard of an Andean-type compressive margin. This deformation is characterized by transpression combined with overthrusting to the NE and N–S horizontal contraction. Marine invertebrates (brachiopods, gastropods, trilobites, bivalves and conularids) and certain ichnofossils had been recorded mainly at the Loma de los Fósiles and “Yacimiento Este” areas (Müller 1965; Manceñido and Damborenea 1984; Spalletti et al. 1991). The faunistic record assigned a Middle-Upper Silurian to Lower Devonian age to the Sierra Grande Formation where Wenlockian biozones and endemic components related to the Malvinokaffric realm had been also recognized. Furthermore, the stratigraphical position of the Sierra Grande Formation is constrained by the Ordovician isotopic age of the granitoids from the Punta Sierra Plutonic Complex that intrude the Neoproterozoic–Cambrian basement (Varela et al. 2008).

Appendix 2

Upper Ventana Group

The Providencia Formation shows an increase in the amount of fine-grained rocks; although pink and reddish to whitish gray-colored quartz-rich sandstones is still the dominant lithotype. The layers are mainly massive but cross-stratification is also observable along the 300-m-thick sequence. The Silurian age (Rodríguez 1988) for this unit was stratigraphically constrained. The Lolén Formation with a 450- to 600-m-thick (Harrington 1972, 1980), which comprises a variety of more immature lithologies: quartz-rich sandstones, feldspar–quartz-rich and mica-rich sandstones and wackes (Andreis 1964b; Massabie and Rossello 1984), coarse sandstones and conglomerates to fine pebbles are also present in the unit. Fine-grained rock levels are irregularly distributed throughout the sequence and micaceous black shales are partly metamorphosed into slates. Brachiopod molds identified as Cryptonella sp. cf. baini, Schellwienella sp. and others representative of the Malvinokaffric realm were recorded 100 m above the bottom of the unit (Harrington 1972, 1980), allowing to assign these levels to the Lower Devonian (Andreis 1964a), similarly to other Gondwanan regions (Bokkeveld Group in the Cape Fold Belt or Fox Bay Formation in Malvinas). Cingolani et al. (2002) described the first record of fossil plants in upper reddish levels of the unit, recognizing Haplostigma sp. and Haskinsia cf. H. colophylla, suggesting the Middle Devonian age and a shallowing up (‘continentalization’) sedimentary process.

Appendix 3

Detrital zircon U–Pb and Lu–Hf methodologies

The detrital zircons were obtained after the classical processes of crushing and sieving of about 3–5 kg of each sample. The fractions retained in less than 140-micron mesh were separated using hydraulic processes to obtain heavy minerals pre-concentrates. These pre-concentrates were treated with bromoform (δ = 2.89) to obtain the complete heavy mineral spectra. Methylene iodide (δ = 3.32) was used to obtain a fraction enriched in zircons, followed by an electromagnetic separation with a Frantz Isodynamic equipment when necessary. The final selection of individual crystals was done by handpicking under a binocular microscope. For isotopic dating, all zircon grains were mounted in 2.5-cm-diameter circular epoxy mounts and polished down until the zircons were just revealed. Images of zircons were obtained using the optical microscope (Leica MZ 125) and backscatter electron microscope (JEOL JSM 5800). Zircon grains were dated with a laser ablation microprobe (New Wave UP213) coupled to a MC-ICP-MS (Neptune) at the Laboratorio de Geología Isotópica, Universidade Federal do Río Grande do Sul, Porto Alegre, Brazil. Isotope data were acquired using static mode with spot sizes of 25 and 15 μm. Laser spots for U–Th–Pb selection were guided by internal structures as seen in SEM images of the mounted and polished grains. Laser-induced elemental fractional and instrumental mass discrimination were corrected by the reference zircon GJ-1 (Simon et al. 2004), following the measurement of two GJ-1 analyses to every five-sample zircon spots. The external errors were calculated after propagation error of the GJ-1 mean and the individual sample zircon (or spot). The laser operating conditions were laser output power of 6 J/cm2 and a shot repetition rate of 10 Hz. The cup configuration of the MC-ICP-MS Neptune was Faradays 206Pb, 208Pb, 232Th, 238U, MIC’s 202Hg, 204Hg + 204Pb, 207Pb. The gas input included a coolant flow (Ar) at 15 l/min, an auxiliary flow (Ar) at 0.8 l/min and a carrier flow of 0.75 l/min (Ar) + 0.45 l/min (He); the acquisition was at 50 cycles of 1.048 s. For the interpretation of the detrital zircon ages, only concordant or nearly concordant (less than 10% discordant) data were considered.

U–Pb SHRIMP analyses were undertaken on SHRIMP II and RG of the Research School of Earth Sciences of the Australian National University, Canberra, Australia. Zircon crystals were handpicked, mounted in epoxy resin, ground to half-thickness and polished with 3- and 1-μm diamond paste; a conductive gold-coating was applied just prior to analysis. The grains were photographed in reflected and transmitted lights, and cathodoluminescence (CL) images were produced in a scanning electron microscope in order to investigate the internal structures of the zircon crystals and to characterize different populations as well. SHRIMP analytical procedures followed the methods described in Compston et al. (1984) and Williams (1998). The standard zircon SL13 was used to determinate U concentration, and the U–Pb ratios were referenced to the zircon standard FC1. Raw isotopic data were reduced using the Squid program (Ludwig 2001), and age calculations and Concordia plots were done using both Squid and Isoplot/Ex software (Ludwig 2003). Analyses and ages for individual SHRIMP spots are listed in the data tables and plotted on Concordia diagrams with 1σ uncertainties. Where data are combined to calculate an age, the quoted uncertainties are at 95% confidence level, with uncertainties in the U–Pb standard calibration included in any relevant U–Pb intercept and Concordia age calculations.

The Hf isotope determinations of zircon grains by LA-ICP-MS were performed at the Laboratory for Isotope Geology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. A Neptune MC-ICP-MS (Thermo Finnigan) was used to measure Lu, Yb and Hf isotopic signals. The mass spectrometer contains 9 Faraday collectors to detect simultaneously the isotopes required for this methodology. The laser ablation system used in this study was a New Wave Research 213 UV. To obtain further improvements in precision of the Hf isotopic data from zircon material with 40-μm ablation pit size, a N2 mixing technique was applied (Iizuka and Hirata 2005). In order to optimize the N2 gas flow rate, the effect of the N2 gas flow rate on elemental sensitivity was investigated, varying the N2 gas flow rate using the zircons GJ-1. Signal intensities for three isotopes (179Hf, 175Lu and 173Yb) obtained from zircon standards increased with N2 gas flow rate. For the corrections in isobaric interferences of Lu and Yb isotopes on mass 176, the isotopes 171Yb, 173Yb and 175Lu were simultaneously monitored during each analysis. The 176Lu and 176Yb were calculated using 176Lu/175Lu of 0.026549 and 173Yb/171Yb of 1.123456 (Chu et al. 2002; Thirlwall and Walder 1995). The correction for instrumental mass bias used an exponential law and a 179Hf/177Hf value of 0.7325 (Patchett et al. 1981) for correction of Hf isotopic ratios. Data were corrected and normalized following the procedure of the laser ablation analyses, in the excel sheet. Each analysis session has the βHf and βYb factors, and in each zircon analysis, we calculate a new βHf and βYb cycle. The mass bias behavior of Lu was assumed to follow that of Yb. It has been noted before that the Yb interference correction is crucial for precise and accurate 176Hf/177Hf obtained by laser ablation analysis (Woodhead et al. 2004).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uriz, N.J., Cingolani, C.A., Chemale, F. et al. Isotopic studies on detrital zircons of Silurian–Devonian siliciclastic sequences from Argentinean North Patagonia and Sierra de la Ventana regions: comparative provenance. Int J Earth Sci (Geol Rundsch) 100, 571–589 (2011). https://doi.org/10.1007/s00531-010-0597-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-010-0597-z

Keywords

Navigation