Skip to main content
Log in

Late Palaeozoic deformation of post-Variscan lower crust: shear zone widening due to strain localization during retrograde shearing

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Santa Lucia Shear Zone (SLSZ, Corsica) is a granulite-facies Permian shear zone that developed after the emplacement of a deep-seated gabbroic intrusion. New structural data shows that the SLSZ results from the juxtaposition of three spatially distinct mylonite belts, which are the product of the interaction between magmatism, metamorphism and shearing over a temperature range from ~800 to ~400°C. During the earlier high-grade deformation stage, which was accompanied by decompression from ~7 to ~5 kb at ~800°C, the SLSZ has accommodated high finite strain on a shear zone ≥1 km wide. Strain became increasingly localized as temperature decreased, but rather than reactivating pre-existing shear zones as commonly expected, younger mylonites expanded into previously unsheared rock, extending the total width of the shear zone. The zonation of different fabrics across the SLSZ suggests that pre-existing compositional and grain size heterogeneities in the starting material played a key role in governing superposed generations of shear zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Altenberger U (1997) Strain localization mechanisms in deep-seated layered rocks. Geol Rundsch 86:56–68. doi:10.1007/s005310050121

    Article  Google Scholar 

  • Amaudric Du Chaffaut S, Saliot P (1979) La région de Corte: secteur clé pour la compréhension du métamorphisme alpin en Corse. Bull Soc Geol Fr 21:149–154

    Google Scholar 

  • Anderson JL, Smith DR (1995) The effects of temperature and fO2 on the Al-in-hornblende barometer. Am Mineral 80:549–559

    Google Scholar 

  • Arthaud F, Matte P (1977) Détermination de la position initiale de la Corse et de la Sardaigne à la fin de l’orogenèse hercynienne grâce aux marqueurs géologiques antémésozoiques. Bull Soc Geol Fr 19:833–840

    Google Scholar 

  • Beach A (1986) A deep seismic reflection profile across the northern North Sea. Nature 323:53–55. doi:10.1038/323053a0

    Article  Google Scholar 

  • Beaumont C, Jamieson RA, Nguyen MH, Lee B (2001) Himalayan tectonics explained by extrusion of a low-viscosity channel coupled to focused surface denudation. Nature 414:738–742. doi:10.1038/414738a

    Article  Google Scholar 

  • Berger A, Stünitz H (1996) Deformation mechanisms and reactions of hornblende: examples from the Bergell tonalite (Central Alps). Tectonophysics 257:149–174. doi:10.1016/0040-1951(95)00125-5

    Article  Google Scholar 

  • Berman RG (2007) WinTWQ (version 2.3): a software package for performing internally-consistent thermobarometric calculations. Geological Survey of Canada, Open File 5462

  • Berman RG, Aranovich LY (1996) Optimized standard state and solution properties of minerals. 1. Model calibration for olivine, orthopyroxene, cordierite, garnet, ilmenite in the system FeO–MgO–CaO–Al2O3–TiO2–SiO2. Contrib Mineral Petrol 126:1–24. doi:10.1007/s004100050232

    Article  Google Scholar 

  • Berman RG, Aranovich LY, Rancourt DG, Mercier PHJ (2007) Reversed phase equilibrium constraints on the stability of Mg–Fe–Al biotite. Am Mineral 92:139–150. doi:10.2138/am.2007.2051

    Article  Google Scholar 

  • Bird P (1991) Lateral extrusion of lower crust from under high topography, in the isostatic limit. J Geophys Res 96:10275–10286. doi:10.1029/91JB00370

    Article  Google Scholar 

  • Block L, Royden LH (1990) Core complex geometries and regional scale flow in the lower crust. Tectonics 9:557–567. doi:10.1029/TC009i004p00557

    Article  Google Scholar 

  • Blumenfeld P, Mainprice D, Bouchez JL (1986) C-slip in quartz from subsolidus deformed granite. Tectonophysics 127:97–115. doi:10.1016/0040-1951(86)90081-8

    Article  Google Scholar 

  • Bonin B, Azzouni-Sekkal A, Bussy F, Ferrag S (1998) Alkalicalcic and alkaline postorogenic (PO) granite magmatism: petrologic constraints and geodynamic settings. Lithos 45:45–70. doi:10.1016/S0024-4937(98)00025-5

    Article  Google Scholar 

  • Bouchez JL, Lister GS, Nicolas A (1983) Fabric asymmetry and shear sense in movement zones. Geol Rundsch 72:401–419. doi:10.1007/BF01822075

    Article  Google Scholar 

  • Bouchez JL, Delas C, Gleizes G, Nédélec A, Cuney M (1992) Submagmatic microfractures in granites. Geology 20:35–38. doi:10.1130/0091-7613(1992)020<0035:SMIG>2.3.CO;2

    Article  Google Scholar 

  • Brodie KH, Rutter E (1987) Deep crustal extensional faulting in the Ivrea Zone of Northern Italy. Tectonophysics 140:193–212. doi:10.1016/0040-1951(87)90229-0

    Article  Google Scholar 

  • Brown M (1994) The generation, segregation, ascent and emplacement of granite magma: the migmatite-to-crustally-derived granite connection in thickened orogens. Earth Sci Rev 36:83–130. doi:10.1016/0012-8252(94)90009-4

    Article  Google Scholar 

  • Brown M (2001) Orogeny, migmatites and leucogranites: a review. In: Proceedings of the Indian academy of sciences, earth and planetary sciences 110:313–336

  • Bucher K, Frey M (2003) Petrogenesis of metamorphic rocks, Seventh edition. Springer, Heidelberg

    Google Scholar 

  • Buck WR (1991) Modes of continental lithospheric extension. J Geophys Res 96:20161–20178. doi:10.1029/91JB01485

    Article  Google Scholar 

  • Burg JP, Vanderhaeghe O (1993) Structures and way-up criteria in migmatites, with application to the Velay Dome (French Massif Central). J Struct Geol 26:1293–1301. doi:10.1016/0191-8141(93)90103-H

    Article  Google Scholar 

  • Caby R, Jacob C (2000) La transition croute-manteau dans la nappe de Santa-Lucia di Mercurio (Corse Alpine): les racines d’un rift Permien. Geol Fr 1:21–34

    Google Scholar 

  • Coward MP (1984) Major shear zones in the Precambrian crust: examples from NW Scotland and southern Africa and their significance. In: Kröner A, Greiling R (eds) Precambrian tectonics illustrated. Schweitzerbart, Stuttgart, pp 207–235

    Google Scholar 

  • Duguet M, Faure M (2004) Granitoid emplacement during a thrusting event: structural analysis, microstructure and quartz c-axis patterns. An example from Hercynian plutons in the French Massif. J Struct Geol 26:927–945. doi:10.1016/j.jsg.2003.09.005

    Article  Google Scholar 

  • Durand Delga M (1984) Principaux traits de la Corse Alpine et corrélations avec les Alpes Ligures. Mem Soc Geol Ital 28:285–329

    Google Scholar 

  • Dymek RF (1983) Titanium, aluminium and interlayer cation substitutions in biotite from high-grade gneisses, West Greenland. Am Mineral 68:880–899

    Google Scholar 

  • Egal E (1992) Structures and tectonic evolution of the external zone of Alpine Corsica. J Struct Geol 14:1215–1228. doi:10.1016/0191-8141(92)90071-4

    Article  Google Scholar 

  • Elter F, Pandeli E (2005) Structural-metamorphic correlations between three Variscan segments in Southern Europe: Maures Massif (France), Corsica (France)-Sardinia (Italy), and Northern Apennines (Italy). In: Carosi R, Dias R, Iacopini D, Rosenbaum G (eds) The southern Variscan belt. J Virtual Expl, Electronic Edition, ISSN 1441-8142, vol 19, Paper 1

  • Fuhrman ML, Lindsley DH (1988) Ternary-feldspar modeling and thermometry. Am Mineral 73:201–215

    Google Scholar 

  • Gans PB (1987) An open system, two-layer crustal stretching model for the eastern great basin. Tectonics 6:1–12. doi:10.1029/TC006i001p00001

    Article  Google Scholar 

  • Gapais D (1989) Shear structures within deformed granites: mechanical and thermal indicators. Geology 17:1144–1147. doi:10.1130/0091-7613(1989)017<1144:SSWDGM>2.3.CO;2

    Article  Google Scholar 

  • Gapais D, Barbarin B (1986) Quartz fabric transition in a cooling syntectonic granite (Hermitage Massif, France). Tectonophysics 125:357–370. doi:10.1016/0040-1951(86)90171-X

    Article  Google Scholar 

  • Garbutt JM, Teyssier C (1991) Prism <c> slip in the quartzites of the Oakhurst Mylonite Belt, California. J Struct Geol 13:657–666. doi:10.1016/0191-8141(91)90028-H

    Article  Google Scholar 

  • Gessner K, Wijns C, Moresi L (2007) Significance of strain localization in the lower crust for structural evolution and thermal history of metamorphic core complexes. Tectonics 26. doi:10.1029/2004TC001768

  • Goleby BR, Shaw RD, Wright C, Kennett BLN, Lambeck K (1988) Geophysical evidence for “thick-skinned” crustal deformation in central Australia. Nature 337:325–337. doi:10.1038/337325a0

    Article  Google Scholar 

  • Hobbs BE (1968) Recrystallization of single crystal of quartz. Tectonophysics 6:353–401. doi:10.1016/0040-1951(68)90056-5

    Article  Google Scholar 

  • Holdsworth RE, Butler CA, Roberts AM (1997) The recognition of reactivation during continental deformation. J Geol Soc London 154:73–78. doi:10.1144/gsjgs.154.1.0073

    Article  Google Scholar 

  • Holdsworth RE, Hand M, Miller JA, Buick IS (2001) Continental reactivation and reworking: an introduction. In: Miller JA, Holdsworth RE, Buick IS, Hand M (eds) continental reactivation and reworking. Geol Soc London, special publication 184:1–12

  • Jackson J (2002) Strength of the continental lithosphere; time to abandon the jelly sandwich? GSA Today 12:4–10. doi:10.1130/1052-5173(2002)012<0004:SOTCLT>2.0.CO;2

    Article  Google Scholar 

  • Ji S, Mainprice D (1990) Recrystallization and fabric development in plagioclase. J Geol 98:65–79

    Article  Google Scholar 

  • Koster van Groos AF, Ter Heege JP (1973) The high-low quartz transition up to 10 kilobars pressure. J Geol 81:717–724

    Article  Google Scholar 

  • Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279

    Google Scholar 

  • Kruhl JH (1996) Prism- and basal-plane parallel subgrain boundaries in quartz: a microstructural geothermobarometer. J Metamorph Geol 14:581–589. doi:10.1046/j.1525-1314.1996.00413.x

    Article  Google Scholar 

  • Kruhl JH, Peternell M (2002) The equilibration of high-angle grain boundaries in dynamically recrystallized quartz: the effect of crystallography and temperature. J Struct Geol 24:1125–1137. doi:10.1016/S0191-8141(01)00096-7

    Article  Google Scholar 

  • Lardeaux JM, Spalla MI (1991) From granulites to eclogites in the Sesia zone (Italian Western Alps): a record of the opening and closure of the Piedmont ocean. J Metamorph Geol 9:35–59. doi:10.1111/j.1525-1314.1991.tb00503.x

    Article  Google Scholar 

  • Law RD, Schmid SM, Wheeler J (1990) Simple shear deformation and quartz crystallographic fabric: a possible natural example from the Torridon area of NW Scotland. J Struct Geol 12:29–45. doi:10.1016/0191-8141(90)90046-2

    Article  Google Scholar 

  • Ledru P, Courrioux G, Dallain C, Lardeaux JM, Montel JM, Vanderhaeghe O, Vitel G (2001) The Velay dome (French Massif Central): melt generation and granite emplacement during orogenic evolution. Tectonophysics 342:207–237. doi:10.1016/S0040-1951(01)00165-2

    Article  Google Scholar 

  • Libourel G (1985) Le complexe de Santa Lucia di Mercurio (Corse). Ph.D. thesis, University of Toulouse, p 405

  • Libourel G (1988) Le complexe de Santa Lucia di Mercurio (Corse): un nouveau jalon de la base de la croute varisique en méditerranée occidentale. C R Acad Sci Paris 307:1067–1073

    Google Scholar 

  • Lisle RJ (1985) The effect of composition and strain on quartz–fabric intensity in pebbles from a deformed conglomerate. Geol Rundsch 74:657–663. doi:10.1007/BF01821219

    Article  Google Scholar 

  • Lister GS (1977) Discussion: crossed girdle c-axis fabric in quartzites plastically deformed by plane strain and progressive simple shear. Tectonophysics 39:51–54. doi:10.1016/0040-1951(77)90087-7

    Article  Google Scholar 

  • Lister GS, Dornsiepen UF (1982) Fabric transition in the Saxony granulite terrain. J Struct Geol 4:81–92. doi:10.1016/0191-8141(82)90009-8

    Article  Google Scholar 

  • Mainprice DH, Bouchez JL, Blumenfeld P, Tubia JM (1986) Dominant c slip in naturally deformed quartz: implications for dramatic plastic softening at high temperature. Geology 14:819–822. doi:10.1130/0091-7613(1986)14<819:DCSIND>2.0.CO;2

    Article  Google Scholar 

  • Malavieille J, Guihot P, Costa S, Lardeaux JM, Gardien V (1990) Collapse of the thickened Variscan crust in the French Massif Central: Mont Pilat extensional shear zone and St. Etienne Late Carboniferous basin. Tectonophysics 177:139–149. doi:10.1016/0040-1951(90)90278-G

    Article  Google Scholar 

  • Malavieille J, Chemenda A, Larroque C (1998) Evolutionary model for Alpine Corsica: mechanism for ophiolite emplacement and exhumation of high-pressure rocks. Terra Nova 10:317–322. doi:10.1046/j.1365-3121.1998.00208.x

    Article  Google Scholar 

  • Marroni M, Molli G, Montanini A, Tribuzio R (1998) The association of continental crust rocks with ophiolites in the Northern Apennines (Italy): implications for the continent–ocean transition in the Western Tethys. Tectonophysics 292:43–66. doi:10.1016/S0040-1951(98)00060-2

    Article  Google Scholar 

  • Massonne HJ, Szpurska Z (1997) Thermodynamic properties of white micas on the basis of high-pressure experiments in the system K2O–MgO–Al2O3–SiO2–H2O. Lithos 41:229–250. doi:10.1016/S0024-4937(97)82014-2

    Article  Google Scholar 

  • Mattauer M, Faure M, Malavieille J (1981) Transverse lineation and large-scale structures related to Alpine obduction in Corsica. J Struct Geol 4:401–409. doi:10.1016/0191-8141(81)90040-7

    Article  Google Scholar 

  • McKenzie D, Nimmo F, Jackson JA, Gans PB, Miller EL (2000) Characteristics and consequences of flow in the lower crust. J Geophys Res 105:11029–11046. doi:10.1029/1999JB900446

    Article  Google Scholar 

  • Meissner R, Mooney W (1998) Weakness of the lower continental crust: a condition for delamination, uplift, and escape. Tectonophysics 296:47–60. doi:10.1016/S0040-1951(98)00136-X

    Article  Google Scholar 

  • Molli G, Tribuzio R, Marquer D (2006) Deformation and metamorphism at the eastern border of the Tenda Massif (NE Corsica): a record of subduction and exhumation of continental crust. J Struct Geol 28:1748–1766. doi:10.1016/j.jsg.2006.06.018

    Article  Google Scholar 

  • Müntener O, Hermann J, Trommsdorff V (2000) Cooling history and exhumation of lower-crustal granulite and upper mantle (Malenco, Eastern Central Alps). J Petrol 41:175–200. doi:10.1093/petrology/41.2.175

    Article  Google Scholar 

  • Nelson KD, Zhao W, Brown LD et al (1996) Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH results. Science 274:1684–1687

    Google Scholar 

  • Neves SP, Vauchez A, Archanjo CJ (1996) Shear zone-controlled magma emplacement or magma-assisted nucleation of shear zones? Insights from northeast Brazil. Tectonophysics 262:349–364. doi:10.1016/0040-1951(96)00007-8

    Article  Google Scholar 

  • Ord A, Hobbs BE (1989) The strength of the continental crust, detachment zones and the development of plastic instabilities. Tectonophysics 158:269–289. doi:10.1016/0040-1951(89)90328-4

    Article  Google Scholar 

  • Paquette JL, Ménot RP, Pin C, Orsini JP (2003) Episodic and short-lived granitic pulses in a post-collisional setting: evidence from precise U-Pb zircon dating through a crustal cross-section in Corsica. Chem Geol 14148:1–20. doi:10.1016/S0009-2541(02)00401-1

    Article  Google Scholar 

  • Passchier CW, Trouw RAJ (2005) Microtesctonics, Second edition. Springer, Heidelberg

    Google Scholar 

  • Passchier CW, Myers JS, Kroner A (1990) Field geology of high-grade gneiss terrains. Springer, Heidelberg

    Google Scholar 

  • Paterson SR, Vernon RH, Tobisch OT (1989) A review of criteria for the identifications of magmatic and tectonic foliations in granitoids. J Struct Geol 11:349–363. doi:10.1016/0191-8141(89)90074-6

    Article  Google Scholar 

  • Paterson SR, Fowler TK Jr, Schmidt KL, Yoshinobu AS, Yuan ES, Miller RB (1998) Interpreting magmatic fabric patterns in plutons. Lithos 44:53–82. doi:10.1016/S0024-4937(98)00022-X

    Article  Google Scholar 

  • Pennacchioni G, Mancktelow NS (2007) Nucleation and initial growth of a shear zone network within compositionally and structurally heterogeneous granitoids under amphibolite facies conditions. J Struct Geol 29:1757–1780. doi:10.1016/j.jsg.2007.06.002

    Article  Google Scholar 

  • Peybernès B, Durand-Delga M, Cugny P (2001) Reconstitution, en Corse, au Jurassique moyen supérieur, de la marge européenne de l’océan Liguro-Piémontais, grâce à des niveaux repères à Praekurnubia crusei (foraminifère). C R Acad Sci Paris 332:499–506

    Google Scholar 

  • Quick J, Sinigoi S, Negrini L, Demarchi G, Mayer A (1992) Synmagmatic deformation in the underplated igneous complex of the Ivrea-Verbano Zone. Geology 20:613–616. doi:10.1130/0091-7613(1992)020<0613:SDITUI>2.3.CO;2

    Article  Google Scholar 

  • Ranalli G, Murphy DC (1987) Rheological stratification of the lithosphere. Tectonophysics 132:281–295. doi:10.1016/0040-1951(87)90348-9

    Article  Google Scholar 

  • Rebay G, Spalla MI (2001) Emplacement at granulite facies conditions of the Sesia-Lanzo metagabbros: an early record of Permian rifting? Lithos 58:85–104. doi:10.1016/S0024-4937(01)00046-9

    Article  Google Scholar 

  • Regenauer-Lieb K, Weinberg RF, Rosenbaum G (2006) The effect of energy feedbacks on continental strength. Nature 442:67–70. doi:10.1038/nature04868

    Article  Google Scholar 

  • Rey P, Vanderhaeghe O, Teyssier C (2001) Gravitational collapse of continental lithosphere: definition, regimes, and modes. Tectonophysics 342:435–444. doi:10.1016/S0040-1951(01)00174-3

    Article  Google Scholar 

  • Rosenberg CL, Handy M (2005) Experimental deformation of partially melted granite revisited: implications for the continental crust. J Metamorph Geol 23:19–28. doi:10.1111/j.1525-1314.2005.00555.x

    Article  Google Scholar 

  • Rosenberg CL, Stünitz H (2003) Deformation and recrystallization of plagioclase along a temperature gradient. The example of the Bergell tonalite. J Struct Geol 25:391–410. doi:10.1016/S0191-8141(02)00036-6

    Google Scholar 

  • Rosenberg C, Medvedev S, Handy MR (2007) On the effects of melting on faulting and continental deformation. In: Handy MR, Hirth G, Hovius N (eds) Dahlem Workshop Report 95. Tectonic faults—agents of change on a dynamic earth. The MIT Press, Cambridge, pp 357–401

  • Ross JV, Wilks KR (1996) Microstructure development in an experimentally sheared orthopyroxene granulite. Tectonophysics 256:83–100. doi:10.1016/0040-1951(95)00168-9

    Article  Google Scholar 

  • Rossi P, Cocherie A, Fanning CM, Deloule E (2006) Variscan to Eo-Alpine events recorded in European lower-crust zircons sampled from the French Massif Central and Corsica, France. Lithos 87:235–260. doi:10.1016/j.lithos.2005.06.009

    Article  Google Scholar 

  • Rutter EH, Brodie KH, Evans PJ (1993) Structural geometry, lower crustal magmatic underplating and lithospheric stretching in the Ivrea-Verbano zone, northern Italy. J Struct Geol 15:647–662. doi:10.1016/0191-8141(93)90153-2

    Article  Google Scholar 

  • Sawyer EW (1999) Criteria for the recognition of partial melting. Phys Chem Earth 24:269–279. doi:10.1016/S1464-1895(99)00029-0

    Article  Google Scholar 

  • Schilling FR, Partzsch GM, Brasse H, Schwarz G (1997) Partial melting below the magmatic arc in the central Andes deduced from geoelectromagnetic field experiments and laboratory data. Phys Earth Pl Int 103:17–31. doi:10.1016/S0031-9201(97)00011-3

    Article  Google Scholar 

  • Schuster R, Stüwe K (2008) Permian metamorphic event in the Alps. Geology 36:603–606. doi:10.1130/G24703A.1

    Article  Google Scholar 

  • Simpson GDH, Thompson AB, Connolly JAD (2000) Phase relations, singularities and thermobarometry of metamorphic assemblages containing phengite, chlorite, biotite, K-feldspar, quartz and H2O. Contrib Mineral Petrol 139:555–569. doi:10.1007/s004100000154

    Article  Google Scholar 

  • Spear FS (1993) Metamorphic phase equilibria and pressure–temperature–time paths. In: Ribbe PH (ed) Mineralogical Society of America-Monograph Series. Mineralogical Society of America, Washington, p 799

  • Speranza F, Villa IM, Sagnotti L, Florindo F, Cosentino D, Cipollari P, Mattei M (2002) Age of the Corsica-Sardinia rotation and Ligure-Provencal Basin spreading: new paleomagnetic and Ar/Ar evidence. Tectonophysics 347:231–251. doi:10.1016/S0040-1951(02)00031-8

    Article  Google Scholar 

  • Starkey J, Cutforth C (1978) A demonstration of the interdependence of the degree of quartz preferred orientation and the quartz content of deformed rocks. Can J Earth Sci 15:841–847

    Google Scholar 

  • Stipp M, Stünitz H, Heilbronner R, Schmid SM (2002) The eastern Tonale fault zone: a “natural laboratory” for crystal plastic deformation of quartz over a temperature range of 250 to 700°C. J Struct Geol 24:1861–1884. doi:10.1016/S0191-8141(02)00035-4

    Article  Google Scholar 

  • Tobisch OT, Paterson SR, Saleeby JB, Geary EE (1989) Nature and timing of deformation in the Foothills terrane, central Sierra Nevada, California: its bearing on orogenesis. Geol Soc Am Bull 101:401–413. doi:10.1130/0016-7606(1989)101<0401:NATODI>2.3.CO;2

    Article  Google Scholar 

  • Tullis J, Yund RA (1987) Transition from cataclastic flow to dislocation creep of feldspar: mechanisms and microstructures. Geology 15:606–609. doi:10.1130/0091-7613(1987)15<606:TFCFTD>2.0.CO;2

    Article  Google Scholar 

  • Urai JL, Means WD, Lister GS (1986) Dynamic recrystallization of minerals. In: Hobbs BE, Heard HD (eds) Mineral and rock deformation: laboratory studies. Geophysical Monograph, vol 36. pp 161–199

  • Vanderhaeghe O, Teyssier C (2001) Partial melting and flow of orogens. Tectonophysics 342:451–472. doi:10.1016/S0040-1951(01)00175-5

    Article  Google Scholar 

  • Vauchez A, Neves SP, Tommasi A (1997) Transcurrent shear zones and magma emplacement in Neoproterozoic belts of Brazil. In: Bouchez J-L, Hutton DHW, Stephens WE (eds) Granite: from segregation of melt to emplacement fabrics. Kluwer, Dordrecht, pp 275–293

    Google Scholar 

  • Vernon RH (2000) Review of microstructural evidence of magmatic and solid-state flow. Elect Geosci 5:2

    Google Scholar 

  • Vernon RH, Flood RH (1988) Contrasting deformation of S- and I-type granitoids in the Lachlan fold belt, eastern Australia. Tectonophysics 147:127–143. doi:10.1016/0040-1951(88)90152-7

    Article  Google Scholar 

  • Vissers RLM, Drury MR, Hoogerduijn Straing EH, Van Der Wal D (1991) Shear zone in the upper mantle: a case study in Alpine lherzolite massif. Geology 19:990–993. doi:10.1130/0091-7613(1991)019<0990:SZITUM>2.3.CO;2

    Article  Google Scholar 

  • Voll G (1960) New work on petrofabrics. Liverp Manch Geol J 2:503–567

    Google Scholar 

  • Waters-Tormey C, Tikoff B (2007) Characteristics of a kilometer-scale high strain zone in the lower continental crust: Mt. Hay block, central Australia. J Struct Geol 29:562–582. doi:10.1016/j.jsg.2006.10.011

    Article  Google Scholar 

  • White JC, Mawer CK (1986) Extreme ductility of feldspars from a mylonite, Parry Sound, Canada. J Struct Geol 8:133–143. doi:10.1016/0191-8141(86)90104-5

    Article  Google Scholar 

  • White SH, Bretan PG, Rutter EH (1986) Fault-zone reactivation: kinematics and mechanisms. Philos Trans R Soc Lond A 317:81–97. doi:10.1098/rsta.1986.0026

    Article  Google Scholar 

  • Williams PF, Jiang D (2005) An investigation of lower crustal deformation: evidence for channel flow and its implications for tectonics and structural studies. J Struct Geol 27:1486–1504. doi:10.1016/j.jsg.2005.04.002

    Article  Google Scholar 

  • Zibra I (2006) Late-Hercynian granitoid plutons emplaced along a deep crustal shear zone. A case study from the S. Lucia Nappe (Alpine Corsica, France). Ph.D. thesis, University of Pisa (Italy); p 204. The complete manuscript is available from: http://etd.adm.unipi.it/theses/available/etd-09142006-171856/

Download references

Acknowledgments

Data contained in this work originate from a portion of I. Zibra PhD thesis that benefited from a very detailed review by Claudio Rosenberg who kindly provided a preprint of his work. I. Zibra thanks G. Molli, A. Montanini, R. Tribuzio and B. E. Hobbs for stimulating discussions during various stages of this work. R. F. Weinberg and O. Vanderhaeghe provided useful comments and suggestions that improved the original submitted manuscript. Quartz c-axis determinations were carried out on a Futron™ automated universal stage at the Tectonics and Material Fabrics Section, Technische Universität München.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Zibra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zibra, I., Kruhl, J.H. & Braga, R. Late Palaeozoic deformation of post-Variscan lower crust: shear zone widening due to strain localization during retrograde shearing. Int J Earth Sci (Geol Rundsch) 99, 973–991 (2010). https://doi.org/10.1007/s00531-009-0441-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-009-0441-5

Keywords

Navigation