Skip to main content

Strain Softening in a Continental Shear Zone: A Field Guide to the Excursion in the Ferriere-Mollières Shear Zone (Argentera Massif, Western Alps, Italy)

  • Chapter
  • First Online:
Structural Geology and Tectonics Field Guidebook — Volume 1

Part of the book series: Springer Geology ((SGFG))

Abstract

Fieldwork, integrated with several techniques for microstructural and geochronological analyses, plays a fundamental part in the study of shear zones. In this guide, we describe a two-day field trip in the Argentera External Crystalline Massif (Western Alps). The Massif is cross-cut by the NW-SE oriented Ferriere-Mollières Shear Zone, a spectacular example of a nearly 25-km-long regional transpressive zone with a maximum thickness of 2 km and a complex and long-lasting evolution during the Variscan time. Recent detailed geological mapping coupled with structural, microstructural, and petrochronological studies reveal that the Ferriere-Mollières Shear Zone was characterized by strain softening that localized strain in its central part during the syn-shearing exhumation and retro-metamorphism. The aim of the field trip is to visit some key outcrops that allow to recognize such evolution and to observe the main features of the Ferriere-Mollières Shear Zone that can be regarded as a good example of a strain softening shear zone in the continental crust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Advokaat, E. L., van Hinsbergen, D. J. J., Maffione, M., Langereis, C. G., Vissers, R. L. M., Cherchi, A., et al. (2014). Eocene rotation of Sardinia, and the paleogeography of the western Mediterranean region. Earth and Planetary Science Letters, 401, 183–195.

    Article  Google Scholar 

  • Arthaud, F., & Matte, P. (1977). Late Paleozoic strikeslip faulting in southern Europe and northern Africa; result of a right-lateral shear zone between the Appalachians and the Urals. Geological Society of America Bulletin, 88, 1305–1320.

    Article  Google Scholar 

  • Baietto, A., Perello, P., Cadoppi, P., & Martinotti, G. (2009). Alpine tectonic evolution and thermal water circulations of the Argentera Massif (South-Western Alps). Swiss Journal of Geosciences, 102(2), 223–245.

    Article  Google Scholar 

  • Ballèvre, M., Manzotti, P., & Dal Piaz, G.V. (2018). Pre-Alpine (variscan) inheritance: a key for the location of the future valaisan basin (Western Alps). Tectonics 37, 786–817. https://doi.org/10.1002/2017TC004633

  • Barale, L., Bertok, C., D’atri, A., Martire, L., Piana, F., & Domini, G. (2016). Geology of the Entracque-Colle di Tenda area (Maritime Alps, NW Italy). Journal of Maps, 12, 359–370.

    Article  Google Scholar 

  • Bellot, J.P. (2005). The Palaeozoic evolution of the Maures massif (France) and its potential correlation with other areas of the Variscan Belt: a review. In: R. Carosi, R. Dias, D. Iacopini, G. Rosenbaum (eds) The southern Variscan belt. Journal of the Virtual Explorer, 19, 1441–8142

    Google Scholar 

  • Brun, J. P., & Burg, J. P. (1982). Combined thrusting and wrenching in the Ibero‐Armorican arc: A corner effect during continental collision. Earth and Planetary Science Letters 61, 319–332.

    Google Scholar 

  • Burg, J.-P., & Matte, P. (1978). A cross section through the French Massif central and the scope of its variscan ggeodynamic evolution. Zeitschrift der Deutschen Geologischen Gesellschaft, 129, 429–460.

    Article  Google Scholar 

  • Carosi, R., & Palmeri, R. (2002). Orogen-parallel tectonics transport in the Variscan belt of northeastern Sadinia (Italy): Implications for the exhumation of medium-pressure metamorphic rocks. Geological Magazine, 139, 497–511.

    Article  Google Scholar 

  • Carosi, R., Montomoli, C., Tiepolo, M., & Frassi, C. (2012). Geochronological constraints on post-collisional shear zones in the Variscides of Sardinia (Italy). Terra Nova, 24, 42–51.

    Article  Google Scholar 

  • Carosi, R., D’addario, E., Mammoliti, E., Montomoli, C., & Simonetti, M. (2016). Geological map of the northwestern portion of the Ferriere-Mollieres shear zone, Argentera Massif, Italy. Journal of Maps, 12, 466–475.

    Article  Google Scholar 

  • Carosi, R., Frassi, C., Iacopini, D., & Montomoli, C. (2005). Post collisional transpressive tectonics in northern Sardinia (Italy). Journal Virtual Explorer, 19(3), 1–18.

    Google Scholar 

  • Carosi, R., Montomoli, C., Iaccarino, S., & Visonà, D. (2018). Structural evolution, metamorphism and melting in the greater Himalayan sequence in central-western Nepal. In P. J. Treloar & M. P. Searle (Eds.), 2019 Himalayan tectonics: A modern synthesis (Vol. 483, pp. 305–323). London:Geological Society, Special Publications.

    Google Scholar 

  • Compagnoni, R., Ferrando, S., Lombardo, B., Radulesco, N., & Rubatto, D. (2010). Paleo-European crust of the Italian western alps: Geological history of the argentera massif and comparison with Mont Blanc-Aiguilles Rouges and Maures-Tanneron Massifs. In M. Beltrando, A. Peccerillo, M. Mattei, S. Conticelli & C. Doglioni (Eds.), Journal of the Virtual Explorer, 36, 4. https://doi.org/10.3809/jvirtex.2009.00228

  • Corsini, M., Ruffet, G., & Caby, R. (2004). Alpine and late Hercynian geochronological constraints in the Argentera Massif (Western Alps). Eclogae Geologicae Helvetiae, 97, 3–15.

    Article  Google Scholar 

  • Corsini, M., & Rolland, Y. (2009). Late evolution of the southern European Variscan belt: Exhumation of the lower crust in a context of oblique convergence. Comptes Rendus Geosciences, 341(2–3), 214–223.

    Article  Google Scholar 

  • Cottle, J. M., Searle, M. P., Jessup, M. J., Crowley, J. L., & Law, R. D. (2015). Rongbuk Re-visited: Geochronology of Leucogranites in the footwall of the south tibetan detachment system, Everest region, Southern Tibet. Lithos, 227, 94–106.

    Article  Google Scholar 

  • Cruciani, G., Montomoli, C., Carosi, R., Franceschelli, M., & Puxeddu, M. (2015). Continental collision from two perspectives: A review of Variscan metamorphism and deformation in northern Sardinia. Periodico di mineralogia, 84(3), 657–699.

    Google Scholar 

  • d’Atri, A., Piana, F., Barale, L., Bertok, C., & Martire, L. (2016). Geological setting of the southern termination of Western Alps. International Journal of Earth Sciences (Geol Rundsch), 105, 1831–1858. https://doi.org/10.1007/s00531-015-1277-9.

    Article  Google Scholar 

  • Dias, R., & Ribeiro, A. (1995). The Ibero-Armorican Arc: A collision effect against an irregular continent? Tectonophysics, 246, 113–128.

    Article  Google Scholar 

  • Dias, R., Ribeiro, A., Romão, J., Coke, C., & Moreira, N. (2016). A review of the arcuate structures in the Iberian Variscides; constraints and genetic models. Tectonophysics, 681, 170–194. https://doi.org/10.1016/j.tecto.2016.04.011.

    Article  Google Scholar 

  • Di Vincenzo, G., Carosi, R., & Palmeri, R. (2004). The relationship between tectono-metamorphic evolution and argon isotope records in white mica: Constraints from in situ 40Ar–39Ar laser analysis of the Variscan basement of Sardinia. Journal of Petrology, 45(5), 1013–1043.

    Article  Google Scholar 

  • Di Vincenzo, G., Talarico, F., & Kleinschmidt, G. (2007). An 40Ar–39Ar investigation of the mertz glacier area (George V Land, Antarctica): implications for the ross orogen–east antarctic craton relationship and gondwana reconstructions. Precambrian Research, 152, 93–118. https://doi.org/10.1016/j.precamres.2006.10.002

  • Dutta, D, Mukherjee, S. (2021). Introduction to Structural Geology and Tectonics Field Guidebook—Volume 1. In S. Mukherjee (Ed.), Structural Geology and Tectonics Field Guidebook—Volume 1. Switzerland AG: Springer Nature. pp. xi-xvi. ISBN: 978-3-030-60142-3.

    Google Scholar 

  • Faure-Muret A. (1955). Etudes géologiques sur le massif de l’Argentera-Mercantour et ses enveloppes sédimentaires. Mémoires pour servir à l’explication de la Carte géologique détaillée de la France, Paris, Imprimerie Nationale, France, with « Esquisse Géologique du Massif de l’Argentera-Mercantour et de sa Bordure Sédimentaire (Versant français)» at the 1/100.000 scale., pp 336.

    Google Scholar 

  • Fernández-Lozano, J., Pastor-Galán, D., Gutiérrez-Alonso, G., & Franco, P. (2016). New kinematic constraints on the Cantabrian orocline: A paleomagnetic study from the Peñalba and Truchas synclines, NW Spain. Tectonophysics, 681, 195–208. https://doi.org/10.1016/j.tecto.2016.02.019.

    Article  Google Scholar 

  • Ferrando, S., Lombardo, B., & Compagnoni, R. (2008). Metamorphic history of HP mafic granulites from the Gesso-Stura Terrain (Argentera Massif, Western Alps, Italy). European Journal of Mineralogy, 20, 777–790.

    Article  Google Scholar 

  • Ferrara, G., & Malaroda, R. (1969). Radiometric age of granitic rocks from the Argentera Massif (Maritime Alps). Bollettino della Società Geologica Italiana, 88, 311–320.

    Google Scholar 

  • Fossen, H., & Tikoff, B. (1993). The deformation matrix for simultaneous simple shearing, pure shearing and volume change, and its application to transpression-transtension tectonics. Journal of Structural Geology, 15, 413–422. https://doi.org/10.1016/0191-8141(93)90137-Y.

    Article  Google Scholar 

  • Fossen, H., Tikoff, B., & Teyssier, C. (1994). Strain modeling of transpressional and transtensional deformation. Norsk Geol. Tidsskr., 74, 134–145.

    Google Scholar 

  • Fossen H. (2016). In Structural geologys (p. 510). Cambridge University Press.

    Google Scholar 

  • Fossen, H., & Cavalcante, G. C. G. (2017). Shear zones–A review. Earth-Science Reviews, 171, 434–455.

    Article  Google Scholar 

  • Fossen, H., & Rotevatn, A. (2016). Fault linkage and relay structures in extensional settings—a review. Earth-Science Reviews, 154, 14–28. https://doi.org/10.1016/j.earscirev.

    Article  Google Scholar 

  • Frassi, C., Carosi, R., Montomoli, C., & Law, R. D. (2009). Kinematics and vorticity of flow associated with post-collisional oblique transpression in the Variscan Inner Zone of northern Sardinia (Italy). Journal of Structural Geology, 31, 1458–1471.

    Article  Google Scholar 

  • Hudleston, P. (1999). Strain compatibility and shear zones: Is there a problem? Journal of Structural Geology, 21, 923–932.

    Article  Google Scholar 

  • Iaccarino, S., Montomoli, C., Carosi, R., Massonne, H. -J., Langone, & A., Visonà, D. (2015). Pressure-temperature-time-deformation path of kyanite-bearing migmatitic paragneiss in the Kali Gandaki valley (central Nepal): Investigation of late Eocene–early Oligocene melting processes: Lithos (Vol. 231, pp. 103–121). https://doi.org/10.1016/j.lithos.2015.06.005

  • Iacopini, D., Carosi, R., Montomoli, C., & Passchier, C. W. (2008). Strain analysis of flow in the Northern Sardinian Varisican belt: Recognition of a partitioned oblique deformation event. Tectonophysics, 221, 345–359.

    Google Scholar 

  • Jessup, M. J., Law, R. D., & Frassi, C. (2007). The rigid grain net (RGN): An alternative method for estimating mean kinematic vorticity number (Wm). Journal of Structural Geology, 29, 411–421.

    Article  Google Scholar 

  • Kurz, G. A., & Northrup, C. J. (2008). Structural analysis of mylonitic fault rocks in the cougar creek complex, OregoneIdaho using the porphyroclast hyperbolic distribution method, and potential use of SC'-type extensional shear bands as quantitative vorticity indicators. Journal of Structural Geology, 30, 1005–1012.

    Article  Google Scholar 

  • Law, R. D., Searle, M. P., & Simpson, R. L. (2004). Strain, deformation temperatures and vorticity of flow at the top of the greater Himalayan Slab, Everest Massif Tibet. Journal of the Geological Society, London, 161, 305–320.

    Article  Google Scholar 

  • Malaroda, R., Carraro, F., Dal Piaz, G. V., Franceschetti, B., Sturani, C., & Zanella, E. (1970). Carta geologica del Massiccio dell’Argentera alla scala 1:50.000 e note illustrative. Memorie della Società Geologica Italiana, 9, 557–663.

    Google Scholar 

  • Matte, P., & Ribeiro, A. (1975). Forme et orientation de l’ellipsoïde de déformation dans la virgation hercynienne de Galice. Relations avec le plissement et hypothèses sur la genèse de l’arc ibéro-armoricain. Comptes Rendus de l’Academie des Sciences de Paris, 280, 2825–2828.

    Google Scholar 

  • Matte, P. (1986). Tectonics and plate tectonics model for the Variscan belt of Europe. Tectonophysics, 126, 329–374.

    Article  Google Scholar 

  • Matte P. (2001). The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: A review. Terra nova, 13, 122–128.

    Google Scholar 

  • Montomoli, C., Iaccarino, S., Carosi, R., Langone, A., & Visonà, D. (2013). Tectonometamorphic discontinuities within the Greater Himalayan Sequence in western Nepal (central Himalaya): Insights on the exhumation of crystalline rocks. Tectonophysics, 608, 1349–1370.

    Article  Google Scholar 

  • Montomoli, C., Carosi, R., Laccarino, S. (2015). Tectonometamorphic discontinuities in the greater Himalayan sequence: A local or a regional feature?. In S. Mukherjee, R. Carosi, P.A. van der Beek, B. K. Mukherjee & D. M. Robinson (Eds.), Tectonics of the Himalaya.(Vol. 412, pp. 25–41) Geological Society of London Special Publication . https://doi.org/10.1144/sp412.3

  • Montomoli, C., Iaccarino, S., Simonetti, M., Lezzerini, M., & Carosi, R. (2018). Structural setting, kinematics and metamorphism in a km-scale shear zone in the Inner Nappes of Sardinia (Italy). Italian Journal of Geoscience, 137, 294–310.

    Article  Google Scholar 

  • Mukherjee, S. (2014). In Atlas of shear zone structures in Meso-scale (pp. 124). Springer International Publishing.

    Google Scholar 

  • Musumeci, G., & Colombo, F. (2002). Late Visean mylonitic granitoids in the Argentera Massif (Western Alps): Age and kinematic constraints on the Ferrière-Mollières shear zone. Comptes Rendus de l’Académie des SciencesSerie II, 334, 213–220.

    Google Scholar 

  • Oliot, E., Melleton, J., Schneider, J., Corsini, M., Gardien, V., & Rolland, Y. (2015). Variscan crustal thickening in the Maures-Tanneron massif (South Variscan belt, France): New in situ monazite U-Th-Pb chemical dating of high-grade rocks. Bulletin de la Société géologique de France, 186, 145–169. https://doi.org/10.2113/gssgfbull.186.2-3.145.

    Article  Google Scholar 

  • Oriolo, S., Wemmer, K., Oyhantcabal, P., Fossen, H., Schulz, B., & Siegesmund, S. (2018). Geochronology of shear zones–A review. Earth-Science Reviews, 185, 665–683.

    Article  Google Scholar 

  • Parson, A. J., Coleman, M. J., Ryan, J. J., Zagorevski, A., Joyce, N. L., Gibson, H. D., & Larson, K. P. (2018). Structural evolution of a crustal-scale shear zone through a decreasing temperature regime: The Yukon River shear zone, Yukon-Tanana terrane, Northern Cordillera. Lithosphere (Vol. 10(6), pp. 760–72).

    Google Scholar 

  • Passchier, C. W. (1987). Stable position of rigid objects in non-coaxial flow: A study in vorticity analysis. Journal Structural Geology 9(5/6), 679–690.

    Google Scholar 

  • Passchier, C. W., Trouw, R. A. J. (2005). Microtectonics (2nd edn., p 101), Berlin, Heidelberg:Springer.

    Google Scholar 

  • Peacock, D. C. P., & Sanderson, D. J. (1991). Displacements, segment linkage and relay ramps in normal fault zones. Journal of Structural Geology, 13, 721–733.

    Article  Google Scholar 

  • Piazolo, S., & Passchier, C. W. (2002). Experimental modelling of viscous inclusions in a circular high-strain ring: implication for the interpretation of shape fabrics and deformed enclaves. Journal Geophysics Reserach 107, B10, 2242 ETG, 11, 1–15.

    Google Scholar 

  • Ponce, C., Druguet, E., & Carreras, J. (2013). Development of shear zone-related lozenges in foliated rocks. Journal of Structural Geology, 50, 176–186.

    Article  Google Scholar 

  • Ramsay, J. G. (1980). Shear zone geometry: A review. Journal of Structural Geology, 2, 83–99.

    Article  Google Scholar 

  • Rosenbaum, G., Lister, G. S., & Duboz, C. (2002). Reconstruction of the tectonic evolution of the western Mediterranean since the Oligocene. In G. Rosenbaum & G. S. Lister (Eds.), Reconstruction of the Alpine-Himalayan Orogen. Journal of the Virtual Explorer, 8, 107–126.

    Google Scholar 

  • Rubatto, D., Schaltegger, U., Lombardo, B., Colombo, F., & Compagnoni, R. (2001). Complex Paleozoic magmatic and metamorphic evolution in the Argentera Massif (Western Alps) resolved with U-Pb dating. Schweizerische Mineralogische und Petrographische Mitteilungen, 81, 213–228.

    Google Scholar 

  • Rubatto, D., Ferrando, S., Compagnoni, R., & Lombardo, B. (2010). Carboniferous high-pressure metamorphism of ordovician protoliths in the argentera massif (Italy), Southern European Variscan belt. Lithos, 116, 65–76. https://doi.org/10.1016/j.lithos.2009.12.013

  • Sanchez, G., Rolland, Y., Schneider, J., Corsini, M., Oliot, E., Goncalves, P., et al. (2011). Dating low-temperature deformation by 40Ar/39Ar on white mica, insights from the Argentera-Mercantour Massif (SW Alps). Lithos, 125, 521–536.

    Article  Google Scholar 

  • Schneider, J., Corsini, M., Reverso-Peila, A., & Lardeaux, J. M. (2014). Thermal and mechanical evolution of an orogenic wedge during Variscan collision: An example in the Maures-Tanneron massif (SE France). Geological Society London, spec. publ., 405, 313–331.

    Google Scholar 

  • Sibson, R. H. (1977). Fault rocks and fault mechanisms. Journal of the Geological Society Conditions, 133, 191–213.

    Article  Google Scholar 

  • Simonetti, M., Carosi, R., & Montomoli, C. (2017). Variscan shear deformation in the Argentera Massif: A field guide to the excursion in the Pontebernardo Valley (CN, Italy). Atti della Società Toscana di Scienze Naturali Memorie, Serie A, 124. https://doi.org/10.2424/ASTSN.M.2017.02

  • Simonetti, M., Carosi, R., Montomoli, C., Langone, A., D’Addario, E., & Mammoliti, E. (2018). kinematic and geochronological constraints on shear deformation in the Ferriere-Mollières shear zone (Argentera-Mercantour Massif, Western Alps): Implications for the evolution of the Southern European Variscan Belt. International Journal of Earth Sciences, 107(6), 2163–2189. https://doi.org/10.1007/s00531-018-1593-y.

    Article  Google Scholar 

  • Simonetti, M., Carosi, R., Montomoli, C., Cottle, J.M., & Law, R.D. (2020a). Transpressive deformation in the southern european variscan belt: new insights from the aiguilles rouges massif (Western Alps). Tectonics, 39 (6). https://doi.org/10.1029/2020TC006153

  • Simonetti, M., Carosi, R., Montomoli, C., Corsini, M., Petroccia, A., Cottle, J. M., & Iaccarino, S. (2020b). Timing and kinematics of flow in a transpressive dextral shear zone, Maures Massif (Southern France). International Journal of Earth Science. 109, 2261–2285. https://doi.org/10.1007/s00531-020-01898-6

  • Soliva, R., & Benedicto, A. (2004). A linkage criterion for segmented normal faults. Journal of Structural Geology, 26, 2251–2267. https://doi.org/10.1016/j.jsg.2004.06.008.

    Article  Google Scholar 

  • Stampfli, G. M., von Raumer, L. F., & Borel, G. D. (2002). Paleozoic evolution of pre-Variscan terranes: from Gondwana to the Variscan collision. Geol S Am S, 364, 263–280.

    Google Scholar 

  • Stipp, M., Stunitz, H., Heilbronner, R., & Schmid, S. M. (2002). The eastern Tonale fault zone: a “natural laboratory” for crystal plastic deformation of quartz over a temperature range from 250 to 700° C. Journal of Structural Geology, 24, 1861–1884.

    Article  Google Scholar 

  • Tollmann, A. (1982). Großraumiger variszischer Deckenbau im Moldanubikum und neue Gedanken zum Variszikum Europas. Geotektonische Forschungen, 64, 1–91.

    Google Scholar 

  • Viegas, L. G. F., Archanjo, C. J., Hollanda, M. H. B. M., & Vauchez, A. (2014). Microfabrics and zircon U-Pb (SHRIMP) chronology of mylonites fromthe Patos shear zone (Borborema Province, NE Brazil). Precambrian Research, 243, 1–17.

    Article  Google Scholar 

  • Wallis, S. R., Platt, J. P., & Knott, S. D. (1993). Recognition of syn-convergence extension in accretionary wedges with examples from Calabrian arc and the Eastern Alps. American Journal of Sciences, 293, 463–495.

    Google Scholar 

  • Xypolias, P. (2010). Vorticity analysis in shear zones: A review of methods and applications. Journal of Structural Geology, 32, 2072–2092.

    Article  Google Scholar 

Download references

Acknowledgements

The staff of Rifugio Migliorero and the staff of Rifugio Prati del Vallone are acknowledged for the hospitality during field work. Research supported by funds from Torino University (Ricerca Locale 2017, 2018) and PRIN 2015 (resp. R. Carosi and C. Montomoli). The Springer team (Marion Schneider, Annett Buettener, Boopalan Renu, Alexis Vizcaino, Doerthe Mennecke-Buehler) is thanked for proofreading and other assistance. Soumyajit Mukherjee is thanked for editorial work and constructive review. Dutta and Mukherjee (2021) encapsulate this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Simonetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Simonetti, M., Carosi, R., Montomoli, C. (2021). Strain Softening in a Continental Shear Zone: A Field Guide to the Excursion in the Ferriere-Mollières Shear Zone (Argentera Massif, Western Alps, Italy). In: Mukherjee, S. (eds) Structural Geology and Tectonics Field Guidebook — Volume 1. Springer Geology(). Springer, Cham. https://doi.org/10.1007/978-3-030-60143-0_2

Download citation

Publish with us

Policies and ethics