Skip to main content
Log in

The 2005 Heidelberg and Speyer earthquakes and their relationship to active tectonics in the central Upper Rhine Graben

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

We determine the source parameters of three minor earthquakes in the Upper Rhine Graben (URG), a Cenozoic rift, using waveforms from permanent and temporary seismological stations. Two shallow thrust-faulting events (M L = 2.4 and 1.5) occurred on the rift shoulder just south of Heidelberg in March 2005. They indicate a possible movement along the sediment–crystalline interface due to tectonic loading from the near-by Odenwald. In February 2005, an earthquake with a normal-faulting mechanism occurred north of Speyer. This event (M L = 2.8) had an unusual depth of about 22 km and a similar deep normal-faulting event occurred there in 1972 (M L = 3.2). Other lower crustal events without fault plane solutions are known from 1981 and 1983. At such a depth, inside the lower crust, ductile behaviour instead of brittle faulting is commonly assumed and used for geodynamic modelling. Based on the newly available fault plane solutions we can confirm the brittle, extensional regime in the upper and lower crust in the central to northern URG indicated in earlier studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahorner L, Schneider G (1974) Herdmechanismen von Erdbeben im Oberrhein-Graben und in seinen Randgebieten. In: Illies JH, Fuchs K (eds) Approaches to taphrogenesis, Schweitzerbart’sche Verlagsbuchhandlung, Stuttgart, pp 104–117

    Google Scholar 

  • Bankwitz P, Bankwitz E, Thomas R, Wemmer K, Kämpf H (2004) Age and depth evidence for pre-exhumation joints in granite plutons: fracturing during the early cooling stage of felsic rock. In: Cosgrove JW, Engdelder T (eds) The initiation, propagation and arrest of joints and other fractures, Geol. Soc. Lond, Spec. Pub, vol 231, pp. 25–47

  • Bonjer K-P (1997a) Seismicity pattern and style of seismic faulting at the eastern borderfault of the southern Rhine Graben. Tectonophysics 275:41–69

    Article  Google Scholar 

  • Bonjer K-P (1997b) nrift.34 catalogue, Geophysical Institute, Universität Karlsruhe (TH), internal report

  • Bonjer K-P, Gelbke C, Gilg B, Rouland D, Mayer-Rossa D, Massinon B (1984) Seismicity and dynamics of the Upper Rhinegraben. J Geophys 55:1–12

    Google Scholar 

  • Brüstle W, Stange S (2006) Seismisches Bulletin Baden-Württemberg 2005. Freiburg, http://www.lgrb.uni-freiburg.de/lgrb/Fachbereiche/erdbebendienst/jahresbulletins

  • Deichmann N (1987) Focal depths of earthquakes in northern Switzerland. Ann Geophys 4:395–402

    Google Scholar 

  • Dèzes P, Schmid SM, Ziegler PA (2004) Evolution of the European Cenozoic rift system: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics 389:1–33

    Article  Google Scholar 

  • Edel J-B, Whitechurch H, Diraison M (2006) Seismicity wedge beneath the Upper Rhine Graben due to backwards Alpine push? Tectonophysics 428:49–64

    Article  Google Scholar 

  • Geyer OF, Gwinner MP (1968) Einführung in die Geologie von Baden-Württemberg. Schweitzerbart’sche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  • Harthill N, Hecht C, Bruss D (2006) The internal geological structure of the Mittlerer Oberheingraben, Abstract. Jahrestagung der Geothermischen Vereinigung, Karlsruhe

  • Leydecker G (2005) Erdbebenkatalog für die Bundesrepublik Deutschland mit Randgebieten für die Jahre 800–2004. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, datafile: http://www.bgr.de/quakecat

  • Lichtenberger M (2006) Underground measurements of electromagnetic radiation related to stress-induced fractures in the Odenwald Mountains (Germany). Pure Appl Geophys 163:1661–1677

    Article  Google Scholar 

  • Meier L, Eisbacher GH (1991) Crustal kinematics and deep structure of the northern Rhine Graben, Germany. Tectonics 10:621–630

    Article  Google Scholar 

  • Müller B, Wehrle V, Zeyen H, Fuchs K (1997) Short-scale variations of tectonic regimes in the western European stress province north of the Alps and Pyrenees. Tectonophysics 275:199–219

    Article  Google Scholar 

  • Peters G, van Bahlen RT (2007) Tectonic morphology of the northern Upper Rhine Graben, Germany. Glob Planet Change 58:310–338

    Article  Google Scholar 

  • Plenefisch T, Bonjer K-P (1997) The stress field in the Rhine Graben area inferred from earthquake focal mechanisms and estimation of frictional parameters. Tectonophysics 275:71–97

    Article  Google Scholar 

  • Plešinger A, Hellweg M, Seidl D (1986) Interactive high-resolution polarization analysis of broad-band seismograms. J Geophys 59:129–139

    Google Scholar 

  • Reyners M, Eberhardt-Phillips D, Stuart D (2007) The role of fluids in lower-crustal earthquakes near continental rifts. Nature 446:1075–1078

    Article  Google Scholar 

  • Schneider G (1964) Die Erdbeben in Baden-Württemberg 1955–1962. Veröffentlichungen des Landeserdbebendienstes Baden-Württemberg, Stuttgart

    Google Scholar 

  • Schneider G (1968) Erdbeben und Tektonik in Südwest-Deutschland. Tectonophysics 5:459–511

    Article  Google Scholar 

  • Schwarz M, Henk A (2005) Evolution and structure of the Upper Rhine Graben: insights from three-dimensional thermomechanical modelling. Int J Earth Sci 94:732–750

    Article  Google Scholar 

  • Schweitzer J (2001) HYPOSAT—an enhanced routine to locate seismic events. Pure Appl Geophys 158:277–289

    Article  Google Scholar 

  • Snoke JA (2003a) FOCMEC: FOCal MEChanism determinations. Int Handb Eng Seismol 81B:29–30

    Google Scholar 

  • Snoke JA (2003b) FOCMEC: FOCal MEChanism determinations, Handbook, 21p

  • Stammler K (1993) SeismicHandler—programmable multichannel data handler for interactive and automatic processing of seismological analysis. Comp Geosci 19:135–140

    Article  Google Scholar 

  • Stange S (2006) ML determination for local and regional events using a sparse network in Southwestern Germany. J Seismol. doi: 10.1007/s10950-006-9010-6

  • Stange S, Brüstle W (2005) The Albstadt/Swabian Jura seismic source zone reviewed through the study of the earthquake of March 22 2003. Jber Mitt Oberrhein Geol Ver 87:391–414

    Google Scholar 

  • Strehlau J, Stange S (2006) Earthquakes in the lower crust under the Northern Alpine Foreland Basin: Seismological detection of active metamorphism? Geophys Res Abstr 8:EGU06-A-08420

    Google Scholar 

  • Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released. Eos, Trans Am Geophys Union 79:579

    Article  Google Scholar 

Download references

Acknowledgments

Seismic waveform data were provided by the Landeserdbebendienst (LED) Baden-Württemberg, the Landeserdbeben-Registrierung (LER) Rheinland-Pfalz, the Hessischer Erdbebendienst (HED), the German Regional Seismic Network (GRSN) through its database at the SZGRF, RENASS (Strasbourg) and GEOFON (Potsdam). W. Scherer and H. Thomas helped with maintenance of the TIMO network which was funded by the Geophysical Institute of the Universität Karlsruhe (TH). Numerous people supported the TIMO experiment by providing safe space for the instruments. G. Peters provided digital data of faults from the northern Rhine Graben. SeismicHandler (Stammler 1993) was used for seismic data analysis and GMT (Wessel and Smith 1998) for plotting maps. We thank Prof. Dr. R. Greiling (Karlsruhe), Prof. Dr. N. Harthill (Karlsruhe) and Dr. S. Stange (Freiburg) for comments on an earlier version of the manuscript. Dr. I. Wölbern and Dr. T. Plenefisch provided useful reviews to clarify some points.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. R. Ritter.

Appendix

Appendix

In Fig. 6, the travel-time data are shown for the Heidelberg main event (May 26 2005) and Speyer event (10 February 2005). The P-wave (circles) and SH-wave (squares) first arrival times of the Heidelberg event can be extrapolated to maximum 0.3 s at the epicentre (0 km distance). Using average seismic velocities (3.0–4.0 km/s) for the sandstone in the region this results in a source depth of less than 2 km. The Wadati plot in Fig. 7 shows the consistency of the P- and SH-wave arrival times (circles), especially for short distances (P-wave arrival time less than 15 s) for which the traveltime is not yet influenced much by anisotropy and 3D heterogeneity. The traveltime data for the Speyer event contain clear offsets at the epicentre (0 km distance) of about 4 s for P-waves (triangles) and 5.5 s for SH-waves (crosses). Using average seismic velocities for the Upper Rhine Graben this results in a source depth of 20–22 km. Again the Wadati plot (Fig. 7, crosses) demonstrates the consistency of the travel-time determinations.

Fig. 6
figure 6

Traveltime curves for the P- and SH-waves of the Heidelberg main event and Speyer event. The inset shows the measured first arrival times at short distances. The arrival times differ significantly for the two events due to their different source depths

Fig. 7
figure 7

Wadati diagram for the Heidelberg main event and Speyer event

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritter, J.R.R., Wagner, M., Bonjer, KP. et al. The 2005 Heidelberg and Speyer earthquakes and their relationship to active tectonics in the central Upper Rhine Graben. Int J Earth Sci (Geol Rundsch) 98, 697–705 (2009). https://doi.org/10.1007/s00531-007-0284-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-007-0284-x

Keywords

Navigation