Skip to main content
Log in

Evolution and structure of the Upper Rhine Graben: insights from three-dimensional thermomechanical modelling

  • Original paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The evolution and geometry of the Tertiary Upper Rhine Graben were controlled by a continually changing stress field and the reactivation of pre-existing crustal discontinuities. A period of WNW-ESE extension in the late Eocene and Oligocene was followed by lateral translation from the early Miocene onwards. This study utilizes 3D finite element techniques to simulate extension and lateral translation on a lithospheric scale. Brittle and creep behaviour of lithospheric rocks are represented by elastoplasticity and thermally activated power-law viscoplasticity, respectively. Contact elements allocated with cohesion and frictional coefficients are used to describe pre-existing zones of weakness in the elastic-brittle field. Our results suggest that (1) extension is accommodated along listric border faults to midcrustal depth of 15–16 km. Beneath, pure shear stretching occurs without a need for localized shear zones in lower crust and upper mantle. (2) Ductile flow at midcrustal depth across the graben accounts for the pronounced halfgraben morphology. Thereby, the shape of the border faults, their frictional coefficients, and sedimentary loads have profound effects on the rate of ductile flow across the graben. (3) Horizontal extension of 8–8.5 km and sinistral displacement across the rift of 3–4 km are needed to accommodate the observed sediment thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Anderle HJ (1968) Die Mächtigkeiten der sandig-kiesigen Sedimente des Quartärs im nördlichen Oberrheingraben und der östlichen Untermainebene. Notizbl hess L-Amt Bodenforsch 96:185–196

    Google Scholar 

  • Anderle HJ (1974) Block tectonic interrelations between Northern Upper Rhine Graben and Southern Taunus Mountains. In: Illies JH, Fuchs K (eds) Approaches to taphrogenesis: proceedings of an international Rift symposium held in Karlsruhe April 1972. Schweizerbart, Stuttgart, pp 243–253

  • Athy LF (1930) Density, porosity and compaction of sedimentary rocks. Bull Am Assoc Pet Geol 14:1–24

    Google Scholar 

  • Banda E, Cloetingh S (1992) Physical properties of the lithosphere. In: Blundell D, Freeman R, Müller S (eds) A continent revealed. Cambridge University Press, pp 71–80

  • Bartz J (1974) Die Mächtigkeit des Quartärs im Oberrheingraben. In: Illies JH, Fuchs K (eds) Approaches to taphrogenesis: proceedings of an international Rift symposium held in Karlsruhe, April 1972. Schweizerbart, Stuttgart, pp 78–87

  • Behrmann J, Hermann O, Horstmann M, Tanner D, Bertrand G (2003) Anatomy and kinematics of oblique continental rifting revealed; a three-dimensional case study of the Southeast Upper Rhine Graben (Germany). AAPG Bull 87:1105–1121

    Google Scholar 

  • Berger JP (2002) Eocene-Pliocene time scale, stratigraphy and terrace dating. Abstract Volume to 2nd EUCOR-URGENT Workshop, p 5

  • Bergerat F (1985) Dèformations cassantes et champs de contrainte tertiaires dans la plate-forme Europèenne. Mem Sci Terre, Universitè P et M Curie, pp 1–315

  • Bosum W, Ullrich HJ (1970) Die Flurmagnetometermessung des Oberrheingrabens und ihre Interpretation. Geol Rundsch 59:83–106

    Google Scholar 

  • Boutilier RR, Keen CE (1994) Geodynamic models of fault-controlled extension. Tectonics 13:439-454

    Article  Google Scholar 

  • Brun JP, Gutscher MA, DEKORP-ECORS team (1992a) Deep crustal structure of the Rhine Graben from DEKORP-ECORS seismic reflection data: a summary. Tectonophysics 208:139–147

    Article  Google Scholar 

  • Brun JP, Wenzel F, ECORS-DEKORP team (1992b) Crustal-scale structure of the southern Rhine Graben from ECORS-DEKORP seismic reflection data. Geology 19:758–762

    Article  Google Scholar 

  • Byerlee JD (1978) Friction of rocks. Pure Appl Geophys 116:615–626

    Google Scholar 

  • Byerlee JD (1990) Friction, overpressure, and fault normal compression. Geophys Res Lett 17:2109–2112

    Google Scholar 

  • Chopra PN, Paterson MS (1981) The experimental deformation of dunite. Tectonophysics 78:453–473

    Article  Google Scholar 

  • Chorowicz J, Defontaines B (1993) Transfer faults and pull-apart model in the Rhine Graben from analysis of multisource data. J Geophys Res 98:14339–14351

    Google Scholar 

  • Clauser C, Villinger H (1990) Analysis of conductive and convective heat transfer in a sedimentary basin, demonstrated for the Rheingraben. Geophys J Int 100:393–414

    Google Scholar 

  • Demoulin A, Launoy T, Zippelt K (1998) Recent crustal movements in the southern Black forest. Geol Rundsch 87:43–52

    Article  Google Scholar 

  • Derer CE (2003) Tectono-sedimentary evolution of the northern Upper Rhine Graben (Germany), with special regard to the early syn-rift stage. PhD thesis, University of Bonn, pp 1–103

  • Diederich G (1987) Bruchtektonik des nördlichen hessischen Buntsandstein-Odenwalds. Geol Jb Hessen 115:305–313

    Google Scholar 

  • Dieterich JH, Conrad G (1984) Effect of humidity on time- and velocity-dependent friction in rocks. J Geophys Res 89:4196–4202

    Google Scholar 

  • Doebl F (1967) The Tertiary and Pleistocene sediments of the northern and central part of the Upper Rhine Graben. Abh Geol L-Anst Baden-Württemberg 6:48–54

    Google Scholar 

  • Doebl F (1970) Die tertiären und quartären Sedimente des südlichen Rheingrabens. In: Illies JH, Müller S (eds) Graben problems: proceedings of an international Rift symposium held in Karlsruhe, October 1968. Schweizerbart, Stuttgart, pp 56–66

  • Doebl F, Teichmueller R (1979) Zur Geologie und heutigen Geothermik im mittleren Oberrheingraben. Fortschr Geol Rheinl u Westf 27:1–17

    Google Scholar 

  • Duringer P (1988) Les conglomérats des bordures du rift cénozoique rhénan. Dynamique sédimentaire et contrôle climatique. PhD thesis, University of Strasbourg, pp 1–261

  • Durst H (1991) Aspects of exploration history and structural style in the Rhine Graben area. In: Spencer AM (ed) Generation, accumulation, and production of Europe’s hydrocarbons. Spec Publ Europ Assoc Petr Geosci 1:247–261

    Google Scholar 

  • Edel JB, Fluck P (1989) The upper Rhenish Shield basement (Vosges, Upper Rhine Graben and Schwarzwald): main structural features deduced from magnetic, gravimetric and geological data. Tectonophysics 169:303–316

    Article  Google Scholar 

  • Edel JB, Weber K (1995) Cadomian terranes, wrench faulting and thrusting in the central Europe Variscides: geophysical and geological evidence. Geol Rundsch 84:412–432

    Article  Google Scholar 

  • Fischer F (1978) Zur Frage der alten Landoberflächen in den Vogesen und im Oberrheingraben. Annales Universitatis Saraviensis 14:42–58

    Google Scholar 

  • Floettmann T, Oncken O (1992) Constraints on the evolution of the Mid German crystalline rise; a study of outcrops west of the River Rhine. Geol Rundsch 81:515–543

    Google Scholar 

  • Golwer A (1968) Paläogeographie des Hanauer Beckens im Oligozän und Miozän. Notizbl hess L-Amt Bodenforsch 96:157–184

    Google Scholar 

  • Groschopf R, Kessler G, Leiber J, Maus HJ, Ohmert O, Schreiner A, Wimmenauer W (1996) Erläuterungen zu Blatt Freiburg i Br. Geol Karte von Baden-Württemb 1:50000. Stuttgart, p 364

  • Groshong RH (1996) Construction and validation of extensional cross sections using lost area and strain, with application to the Rhine Graben. In: Buchanan PG, Nieuwland DA (eds) Modern developments in structural interpretation. Geol Soc Spec Publ 99:79–87

    Google Scholar 

  • Grosse S, Behr HJ, Edel JB, Heinrichs T (1992) The gravity field along the central segment of the EGT. Tectonophysics 207:97–121

    Article  Google Scholar 

  • Gutscher MA (1995) Crustal structure and dynamics in the Rhine Graben and the Alpine foreland. Geophys J Int 122:617–636

    Google Scholar 

  • Haenel R, Staroste E (1988) Atlas of geothermal resources in the European Community, Austria and Switzerland. Schäfer, Hannover, pp 1–74

    Google Scholar 

  • Haq BU, Hardenbol J, Vail R (1988) Mesozoic and Cenozoic chronostratigraphy and eustatic cycles. Soc Econ Palaeontol Geol Soc Spec Pub 42:71–108

    Google Scholar 

  • Harthill N (2002) The tectonic basis of the geothermal potential of the Oberrheingraben. Abstract Volume to 7th Geothermische Fachtagung, pp 143–151

  • Heling D (1969) Relationships between initial porosity of Tertiary argillaceous sediments and palaeosalinity in the Rhinegraben (SW-Germany). J Sedim Petrology 39:246–254

    Google Scholar 

  • Henk A (1993) Subsidenz und Tektonik des Saar-Nahe-Beckens (SW-Deutschland). Geol Rundsch 82:3–19

    Article  Google Scholar 

  • Henk A (1997) Gravitational orogenic collapse vs plate boundary stresses: a numerical modelling approach to the Permo-carboniferous evolution of Central Europe. Geol Rundsch 86:39–55

    Article  Google Scholar 

  • Henk A (1998) Thermomechanische Modellierungen zur postkonvergenten Krustenequilibrierung in den Varisciden. Geotekt Forsch 90:1–124

    Google Scholar 

  • Hill DP (1992) A note on ambient pore pressure, fault-confined pore pressure, and apparent friction. Bull Seis Soc Am 83:583–586

    Google Scholar 

  • Holbrook WS, Gajewski D, Krammer A, Prodehl C (1988) An interpretation of wide-angle compressional and shear wave data in Southwest Germany: Poisson’s ratio and petrological implications. J Geophys Res 93:12081–12106

    Google Scholar 

  • Illies JH (1962) Prinzipien der Entwicklung des Rheingrabens, dargestellt am Grabenabschnitt bei Karlsruhe. Mitt Geol Staatsinst Hamburg 31:58–121

    Google Scholar 

  • Illies JH (1975) Recent and palaeo-intraplate tectonics in stable Europe and the Rhinegraben rift system. Tectonophysics 29:251–264

    Article  Google Scholar 

  • Illies JH, Greiner G (1979) Holocene movements and state of stress in the Rhine graben rift system. Tectonophysics 52:349–359

    Article  Google Scholar 

  • Krohe A (1992) Structural evolution of intermediate-crustal rocks in a strike slip and extensional setting (Variscan Odenwald, SW Germany): differential upward transport of metamorphic complexes and changing deformation mechanisms. Tectonophysics 205:357–386

    Article  Google Scholar 

  • Lacombe O, Angelier J, Byrne D, Dupin JM (1993) Eocene-Oligocene tectonics and kinematics of the Rhine-Saone continental transform zone (Eastern France). Tectonics 12:874–888

    Google Scholar 

  • Larroque JM, Laurent P (1988) Evolution of the stress field in the south of the Rhine Graben from the Eocene to the present. Tectonophysics 148:41–58

    Article  Google Scholar 

  • Laubscher H (1992) Jura kinematics and the Molasse basin. Eclogae geol Helv 85:653–675

    Google Scholar 

  • Laubscher H (2001) Plate interactions at the southern end of the Rhine Graben. Tectonophysics 343:1–19

    Article  Google Scholar 

  • Lysak SV (1992) Heat flow variations in continental rifts. Tectonophysics 208:309–323

    Article  Google Scholar 

  • Maass R (1988) Die Südvogesen zu variszischer Zeit. N Jb Geol Paläont Mh 10:611–638

    Google Scholar 

  • Mackwell SJ, Zimmermann ME, Kohlstedt DL (1998) High-temperature deformation of dry diabase with application to tectonics on Venus. J Geophys Res 103:975–984

    Article  Google Scholar 

  • Mandl G (2000) Faulting in brittle rocks: an introduction to the mechanics of tectonic faults. Springer, Berlin Heidelberg New York, pp 1–434

    Google Scholar 

  • Marell D (1989) Das Rotliegende zwischen Odenwald und Taunus. Geol Abh Hessen 89:1–128

    Google Scholar 

  • Mart Y, Dauteuil O (2000) Analogue experiments of propagation of oblique rifts. Tectonophysics 316:121–132

    Article  Google Scholar 

  • Mayer G, Mai PM, Plenefish T, Echtler H, Lüschen E, Wehrle V, Müller B, Bonjer KP, Prodehl C, Fuchs K (1997) The deep crust of the southern Rhine Graben: reflectivity and seismicity as images of dynamic processes. Tectonophysics 275:15–40

    Article  Google Scholar 

  • Meier L (1989) Ein Modell für die Tiefenstruktur und Kinematik im Bereich des nördlichen Rheingrabens. PhD thesis, University of Karlsruhe, pp 1–117

  • Meier L, Eisbacher G (1991) Crustal kinematics and deep structure of the northern Rhine Graben. Tectonics 10:621–630

    Google Scholar 

  • Meissner R, Bortfeld RK (1990) DEKORP Atlas. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Mengel K, Sachs PM, Stosch HG, Wörner G, Loock G (1991) Crustal xenoliths from the Cenozoic fields of West Germany: implications for structure and composition of the continental crust. Tectonophysics 195:271–289

    Article  Google Scholar 

  • Michon L, Van Balen RT, Merle O, Pagnier H (2003) The Cenozoic evolution of the Roer Valley Rift System integrated at a European scale. Tectonophysics 367:101–126

    Article  Google Scholar 

  • Pfiffner OA, Schlunegger F, Buiter SJH (1998) The Swiss Alps and their peripheral foreland basin: stratigraphic response to deep crustal processes. Tectonics 21(1):10.129/2000TC9000039

    Google Scholar 

  • Plaumann S (1991) Die Schwerekarte 1:500 000 der Bundesrepublik Deutschland (Bouguer-Anomalien), Blatt Mitte. Geol Jb E 46:3–16

    Google Scholar 

  • Plaumann S, Groschopf R, Schädel K (1986) Kompilation einer Schwerekarte und einer geologischen Karte für den mittleren und nördlichen Schwarzwald mit einer Interpretation gravimetrischer Detailvermessungen. Geol Jb E 33:15–30

    Google Scholar 

  • Prodehl C, Mueller St, Glahn A, Gutscher MA, Haak V (1992) Lithospheric cross sections of the European Cenozoic rift system. Tectonophysics 208:113–138

    Article  Google Scholar 

  • Roll A (1979) Versuch einer Volumenbilanz des Oberrheintalgrabens und seiner Schultern. Geol Jb A 52:3–82

    Google Scholar 

  • Rousset D, Bayer R, Guillon D, Edel JB (1992) Structure of the southern Rhine Graben from gravity and reflection seismic data (ECORS-DEKORP program). Tectonophysics 221:135–153

    Article  Google Scholar 

  • Royer JJ, Danis M (1988) Steady state geothermal model of the crust and the problem of the boundary conditions; application to a rift system, the southern Rhine Graben. Tectonophysics 156:239–255

    Article  Google Scholar 

  • Schad A (1962) Voraussetzungen für die Bildung von Erdöllagerstätten im Rheingraben. Abh Geol L-Anst Baden-Württemberg 4:29–40

    Google Scholar 

  • Schumacher ME (2002) Upper Rhine Graben: role of pre-existing structures during rift evolution. Tectonics 21:10.1029/2001TC900022

    Article  Google Scholar 

  • Seipold U (1998) Temperature-dependence of thermal transport properties of crystalline rocks—a general law. Tectonophysics 291:161–171

    Article  Google Scholar 

  • Seyferth M, Henk A (2000) Deformation, metamorphism and exhumation: quantitative models for a continental collision zone in the Variscides. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the variscan belt. Geol Soc Spec Publ 179:217–230

    Google Scholar 

  • Shelton G, Tullis J (1981) Experimental flow laws for crustal rocks. EOS 62:396

    Google Scholar 

  • Sibson RH (1974) Frictional constraints on thrust, wrench, and normal faults. Nature 242:542–544

    Google Scholar 

  • Sissingh W (1998) Comparative Tertiary stratigraphy of the Rhine Graben, Bresse Graben, and Molasse Basin: correlation of Alpine foreland events. Tectonophysics 300:249–284

    Article  Google Scholar 

  • Straub EW (1962) Voraussetzungen für die Bildung von Erdöllagerstätten im Rheingraben. Abh Geol L-Anst Baden-Württemberg 4:123–136

    Google Scholar 

  • Strehlau J, Meissner R (1987) Estimation of crustal viscosities and shear stresses from an extrapolation of experimental steady state flow data. In: Fuchs K, Froidevaux C (eds) Composition, structure and dynamics of the lithosphere-asthenosphere system. Geodyn Ser Am Geophys Union 16:69–87

    Google Scholar 

  • Teichmüller M, Teichmüller R (1979) Zur geothermischen Geschichte des Oberrheingrabens. Zusammenfassung und Auswertung eines Symposiums. Fortschr Geol Rheinld u Westf 27:109–120

    Google Scholar 

  • Wenzel F, Brun JP, ECORS-DEKORP team (1991) A deep reflection seismic line across the northern Rhine Graben. Earth Planet Sci Lett 104:140–150

    Article  Google Scholar 

  • Wilks KR, Carter NL (1990) Rheology of some continental lower crustal rocks. Tectonophysics 182:57–77

    Article  Google Scholar 

  • Zeiss S, Gajewski D, Prodehl C (1990) Crustal structure of southern Germany from seismic refraction data. Tectonophysics 176:59–86

    Article  Google Scholar 

  • Ziegler PA (1992) European Cenozoic rift system. Tectonophysics 208:91–111

    Article  Google Scholar 

Download references

Acknowledgements

This paper is a contribution to the European Upper Rhine Graben Evolution and Neotectonics (EUCOR-URGENT) Project. Nina Kukowski and Charles Gumiaux are kindly thanked for their thorough and detailed reviews. The authors acknowledge financial support by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schwarz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarz, M., Henk, A. Evolution and structure of the Upper Rhine Graben: insights from three-dimensional thermomechanical modelling. Int J Earth Sci (Geol Rundsch) 94, 732–750 (2005). https://doi.org/10.1007/s00531-004-0451-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-004-0451-2

Keywords

Navigation