Skip to main content
Log in

Biological record of added manganese in seawater: a new efficient tool to mark in vivo growth lines in the oyster species Crassostrea gigas

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The biological response of increased manganese in seawater was tested experimentally with the oyster species Crassostrea gigas by adding, once per day, a fixed quantity of MnCl2 to the container where the oysters were living. Uptake of Mn2+ in the shell was traced with cathodoluminescence and quantified with a high spatial resolution proton microprobe. The daily addition of MnCl2 resulted in the visualization of distinct growth increments seen simultaneously in both the calcitic shell and the aragonitic ligament. A relation was observed between the addition of Mn2+ to the seawater and incorporation of Mn in the mineral part of the shell. Thus, addition of MnCl2 to seawater is an efficient tool to mark in vivo growth increments in bio-mineralised carbonates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barbin V (1997) Cathodoluminescence of biogenic carbonates. (Key note) 18th regional IAS meeting (Heidelberg, Germany), GAEA heidelbergensis 3:58

  • Barbin V (2000) Cathodoluminescence of carbonates shells: biochemical vs diagenetic process. In: Pagel M, Barbin V, Blanc Ph, Ohnenstetter D (eds) Cathodoluminescence in Geosciences. Springer, Berlin, pp 303–329

    Google Scholar 

  • Barbin V, Elfman M, Yang C, Schein E, Roux M, Ramseyer K (1998) Fluctuation des teneurs en manganèse dans les carbonates biogènes: diagenèse ou enregistrement des variations environnementales? Apport de la cathodoluminescence et de la microsonde à protons. Abstract, RST Brest, Soc. Géol. Fr. Edit., Paris. 67. (ISSN 0249 7557)

  • Barbin V, Ramseyer K, Debenay JP, Schein E, Roux M, Decrouez D (1991) Cathodoluminecence of recent biogenic carbonates: an environmental and ontogenic fingerprint. Geol Mag 128:19–26

    Article  Google Scholar 

  • Böhn F, Gussone N, Eisenhauer A, Dullo WC, Reynaud S, Paytan A (2006) Calcium isotope fractionation in modern scleractinian corals. Geochim Cosmochim Acta 70:4452–4462

    Article  Google Scholar 

  • Carriker MR, Palmer RE, Sick LV, Johnson CC (1980) Interaction of mineral elements in seawater and shell oysters (Crassostrea virginica (Gmelin)) cultured in controlled and natural systems. J Exp Mar Bio Ecol 46:279–296

    Article  Google Scholar 

  • Carriker MR, Swann CP, Prezant RS, Counts CL (1991) Chemical elements in the aragonitic and calcitic microstructural groups of shell of the oyster Crassostrea virginica: a proton probe study. Mar Biol 109:287–297

    Article  Google Scholar 

  • Cravo A, Bebianno MJ, Foster P (2004) Partitioning of trace metals between soft tissues and shells of Patella aspera. Environ Int 30:87–98

    Article  Google Scholar 

  • de Riclès A, Livage J (2004) An introduction to biomineralization: diversity and unity. CR Palevol 3:435–441

    Article  Google Scholar 

  • Dubois PH, Chen CP (1989) Calcification in echinoderms. In: Jangoux M, Lawrence JM (eds) Echinoderm studies, vol 3. Balkema, Rotterdam, pp 109–172

  • El Ali A, Barbin V, Calas G, Cervelle B, Ramseyer K, Bouroulec J (1993) Mn2+-activated luminescence in dolomite, calcite and magnesite: quantitative determination of manganese and site distribution by EPR and CL spectroscopy. Chem Geol 104:189–202

    Article  Google Scholar 

  • Elfman M, Kristiansson P, Malmqvist KG, Pallon J, Sjöland KA, Utui RJ, Yang C (1997) New CAMAC based data acquisition and beam control system for Lund nuclear microprobe. Nucl Instrum Methods B 130:123–126

    Article  Google Scholar 

  • Elfman M, Kristiansson P, Malmqvist KG, Pallon J (1999) The layout and performance of the LUND nuclear microprobe trigger and data acquisition system. Nucl Instrum Methods B 158:141–145

    Article  Google Scholar 

  • Fred C, Andrus T, Crowe DE (2000) Geochemical analysis of Crassostrea virginica as a method to determine season capture. J Arch Sci 27:33–42

    Article  Google Scholar 

  • Götze J (2002) Potential of cathodoluminescence (CL) microscopy and spectroscopy for tne analysis of minerals and materials. Anal Bioanal Chem 374:703–708

    Article  Google Scholar 

  • Johansson SAE, Cambell JL (1988) PIXE: a novel technique for elemental analysis. Wiley, New York, 347 pp

  • Lowenstam HT (1981) Minerals formed by organisms. Science 211:1126

    Article  Google Scholar 

  • Lowenstam HT, Weiner S (1989) On biomineralization. Oxford University Press, Oxford, 324 pp

  • Malmqvist KG, Hylten G, Hult M, Håkansson K, Knox JM, Larsson NPO, Nilsson C, Pallon J, Schofield R, Swietlicki E, Tapper UAS, Yang C (1993) Dedicated accelerator and microprobe line. Nucl Instrum Methods B 77:3–7

    Article  Google Scholar 

  • Marshall DJ (1988) Cathodoluminescence of geological materials. Unwin Hyman, Boston, 146 pp

  • Nordstrom DK, Plummer LN, Wigley TML, Ball JW, Jenne EA, Bassett RL, Crerar DA, Florence TM, Fritz B, Hoffman M, Holdren GR Jr, Lafon GM, Mattigod SV, McDuff RE, Morel F, Reddy MM, Sposito G, Thrailkill J (1979) Comparison of computerized chemical models for equilibrium calculations in aqueous systems. In: Jenne EA (ed) Chemical modelling in aqueous systems, ACS symposium series 93. American Chemical Society, Washington, 892 pp

    Google Scholar 

  • Ramseyer K, Fischer J, Matter A, Eberhardt P, Geiss J (1989) A cathodoluminescence microscope for low intensity luminescence. J Sediment Petrol 59:619–622

    Google Scholar 

  • Rousseau M, Plouguerné E, Wan G, Lopez E, Fouchereau-Peron M (2003) Biomineralization markers during a phase of active growth in Pinctada margaritifera. Comp Biochem Physiol A 135:271–278

    Google Scholar 

  • Rosenberg GD (1980) An ontogenetic approach to the environmental significance of bivalve shell chemistry. In: Rhoads DC, Lutz RA (eds) Skeletal growth of aquatic organisms. Plenum, New York, pp 33–168

    Google Scholar 

  • Stenzel HB (1962) Aragonite in the resilium of oysters. Science 136:1121–1122

    Article  Google Scholar 

  • Szefer P, Frelek K, Szefer K, Lee ChB, Kim BS, Warzocha J (2002) Distribution and relationships of trace metals in soft tissue, byssus and shells of Mytilus edulis trossulus from the southern Baltic. Environ Pollut 120:423–444

    Article  Google Scholar 

  • Waldichuk M (1974) Some biological concerns in heavy metal pollution In: Vernberg FJ, Vernberg WB (eds) Pollution and physiology of marine organisms. Academic, New York, pp 1–55

    Google Scholar 

  • Wilbur KM, Saleuddin ASM (1983) Shell formation. In: Saleuddin ASM, Wilbur KM (eds) The Mollusca, vol 4. Academic, New York, pp 235–287

  • Witkowski FW, Blundell DJ, Gutteridge P, Horbury AD, Oxtoby NH, Quing H (2000) Video cathodoluminescence microscopy of diagenetic cements and its applications. Mar Petrol Geol 17:1085–1093

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jens Götze and Anton Eisenhauer for their very helpful comments. We also thank M. Elfman, S. Hocquet, C. Piquet, M. Roux, E. Schein, E. Yang, and IFREMER for their help at different moments of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Barbin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbin, V., Ramseyer, K. & Elfman, M. Biological record of added manganese in seawater: a new efficient tool to mark in vivo growth lines in the oyster species Crassostrea gigas . Int J Earth Sci (Geol Rundsch) 97, 193–199 (2008). https://doi.org/10.1007/s00531-006-0160-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-006-0160-0

Keywords

Navigation