Skip to main content
Log in

Dynamics of a Periodically Pulsed Bio-Reactor Model With a Hydraulic Storage Zone

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we investigate a periodically pulsed bio-reactor model of a flowing water habitat with a hydraulic storage zone in which no flow occurs. The full system can be reduced to a limiting system based on a conservation principle. Then we obtain sufficient conditions in terms of principal eigenvalues for the persistence of single population and the coexistence of two competing populations for the limiting system by appealing to the theory of monotone dynamical systems. Finally, we use the theory of chain transitive sets to lift the dynamics of the limiting system to the full system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Ballyk M., Dung L.E., Jones D.A., Smith H.L.: Effects of random motility on microbial growth and competition in a flow reactor. SIAM J. Appl. Math. 59, 573–596 (1998)

    Article  MathSciNet  Google Scholar 

  2. Baxley J.V., Robinson S.B.: Coexistence in the unstirred chemostat. Appl. Math. Comput. 89, 41–65 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Deimling K.: Nonlinear Functional Analysis. Springer, Berlin (1988)

    Google Scholar 

  4. Grover J.P., Hsu S.-B., Wang F.-B.: Competition and coexistence in flowing habitats with a hydraulic storage zone. Math. Biosci. 222, 42–52 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hess, P.: Periodic-Parabolic Boundary Value Problem and Positivity, Pitman Res. Notes Math., 247, Longman Scientific and Technical (1991)

  6. Hsu S.B., Waltman P.: On a system of reaction-diffusion equations arising from competition in an unsirred chemostat. SIAM J. Appl. Math. 53, 1026–1044 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hsu S.B., Smith H.L., Waltman P.: Competitive exclusion and coexistence for competitive system on ordered Banach space. Trans. Am. Math. Soc. 348, 4083–4094 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jiang, J., Liang, X., Zhao, X.-Q.: Saddle point behavior for monotone semiflows and reaction-diffusion models. J. Differ. Equ. 313–330 (2004)

  9. Kung C.M., Baltzis B.: The growth of pure and simple microbial competitors in a moving distributed medium. Math. Biosci. 111, 295–313 (1992)

    Article  MATH  Google Scholar 

  10. Magal P., Zhao X.-Q.: Global attractors and steady states for uniformly persistent dynamical systems. SIAM. J. Math. Anal. 37, 251–275 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Martin R., Smith H.L.: Abstract functional differential equations and reaction-diffusion systems. Trans. Am. Math. Soc. 321, 1–44 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nussbaum R.D.: Eigenvectors of nonlinear positive operator and the linear Krein-Rutman theorem. In: Fadell, E., Fournier, G. (eds) Fixed Point Theory, Lecture Notes in Mathematics, vol. 886, pp. 309–331. Springer, New York/Berlin (1981)

    Google Scholar 

  13. Pazy A.: Semigroups of linear operators and application to partial differential equations. Springer, New York (1983)

    Book  Google Scholar 

  14. Protter M.H., Weinberger H.F.: Maximum Principles in Differential Equations. Springer, New York (1984)

    Book  MATH  Google Scholar 

  15. Sell G.R., You Y.: Dynamics of Evolutionary Equations. Springer, New York (2002)

    MATH  Google Scholar 

  16. Smith, H.L.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys Monogr 41, American Mathematical Society Providence, RI (1995)

  17. Smith H.L., Waltman P.E.: The Theory of the Chemostat. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  18. Smith H.L., Zhao X.-Q.: Dynamics of a periodically pulsed bio-reactor model. J. Differ. Equ. 155, 368–404 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang F., Zhao X.-Q.: Asymptotic behaviour of a reaction-diffusion model with a quiescent stage. Proc. R. Soc. A 463, 1029–1043 (2007)

    Article  MATH  Google Scholar 

  20. Zhao X.-Q.: Dynamical Systems in Population Biology. Springer, New York (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Bin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, SB., Wang, FB. & Zhao, XQ. Dynamics of a Periodically Pulsed Bio-Reactor Model With a Hydraulic Storage Zone. J Dyn Diff Equat 23, 817–842 (2011). https://doi.org/10.1007/s10884-011-9224-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-011-9224-3

Keywords

Mathematics Subject Classification (2010)

Navigation