Skip to main content
Log in

Smooth approximation is not a selection principle for the transport equation with rough vector field

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we analyse the selection problem for weak solutions of the transport equation with rough vector field. We answer in the negative the question whether solutions of the equation with a regularized vector field converge to a unique limit, which would be the selected solution of the limit problem. To this aim, we give a new example of a vector field which admits infinitely many flows. Then we construct a smooth approximating sequence of the vector field for which the corresponding solutions have subsequences converging to different solutions of the limit equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ainzenmann, M.: On vector fields as generators of flows: a counterexample to Nelson’s conjecture. Ann. Math. 107, 287–296 (1978)

    Article  MathSciNet  Google Scholar 

  2. Alberti, G., Bianchini, S., Crippa, G.: A uniqueness result for the continuity equation in two dimensions. J. Eur. Math. Soc. (JEMS) 16, 201–234 (2014)

    Article  MathSciNet  Google Scholar 

  3. Alberti, G., Bianchini, S., Crippa, G.: Structure of level sets and Sard-type properties of Lipschitz maps. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 12(4), 863–902 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Ambrosio, L.: Transport equation and Cauchy problem for BV vector fields. Inventiones Mathematicae 158, 227–260 (2004)

    Article  MathSciNet  Google Scholar 

  5. Attanasio, S., Flandoli, F.: Zero noise solutions of linear transport equations without uniqueness: an example. C. R. Math. Acad. Sci. Paris 347(13–14), 753–756 (2009)

    Article  MathSciNet  Google Scholar 

  6. Bardos, C., Titi, E.S., Wiedemann, E.: The vanishing viscosity as a selection principle for the Euler equations: the case of 3D shear flow. C. R. Math. Acad. Sci. Paris 350(15–16), 757–760 (2012)

    Article  MathSciNet  Google Scholar 

  7. Bianchini, S., Bonicatto, P.: A uniqueness result for the decomposition of vector fields in \({\mathbb{R}}^d\). (2017) http://cvgmt.sns.it/paper/3619/

  8. Bohun, A., Bouchut, F., Crippa, G.: Lagrangian flows for vector fields with anisotropic regularity. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(6), 1409–1429 (2016)

    Article  MathSciNet  Google Scholar 

  9. Bouchut, F., Crippa, G.: Lagrangian flows for vector fileds with gradient given by a singular integral. J. Hyperbolic Differ. Equ. 10, 235–282 (2013)

    Article  MathSciNet  Google Scholar 

  10. Bressan, A.: An ill posed Cauchy problem for a hyperbolic system in two space dimensions. Rend. Sem. Mat. Univ. Padova 110, 103–117 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Buckmaster, T., Vicol, V.: Nonuniqueness of weak solutions to the Navier–Stokes equation. Ann. Math. 189, 101–144 (2019)

    Article  MathSciNet  Google Scholar 

  12. Ciampa, G., Crippa, G., Spirito,S.: On smooth approximations of rough vector fields and the selection of flows. (2019). arXiv:1902.00710

  13. Colombini, F., Luo, T., Rauch, J.: Uniqueness and nonuniqueness for nonsmooth divergence-free transport. Équations aux Dérivées Partielles, Exp. No. XXII, École Polytech., Palaiseau, Séminaire (2003)

  14. Crippa, G., De Lellis, C.: Estimates and regularity results for the DiPerna–Lions flow. J. Reine Angew. Math. 616, 15–46 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Crippa, G., Gusev, N., Spirito, S., Wiedemann, E.: Non-uniqueness and prescribed energy for the continuity equation. Commun. Math. Sci. 13(7), 1937–1947 (2015)

    Article  MathSciNet  Google Scholar 

  16. Crippa, G., Nobili, C., Seis, C., Spirito, S.: Eulerian and Lagrangian solutions to the continuity and Euler equations with \(L^1\) vorticity. SIAM J. Math. Anal. 49(5), 3973–3998 (2017)

    Article  MathSciNet  Google Scholar 

  17. De Lellis, C., Szèkelyhidi, L.: On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195, 225–260 (2010)

    Article  MathSciNet  Google Scholar 

  18. Depauw, N.: Non unicité des solutions bornés pour un champ de vecteurs BV en dehors d’un hyperplan. C.R. Math. Sci. Acad. Paris 337, 249–252 (2003)

    Article  MathSciNet  Google Scholar 

  19. DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invententiones Mathematicae 98, 511–547 (1989)

    Article  MathSciNet  Google Scholar 

  20. Modena, S., Sattig, G.: Convex integration solutions to the transport equation with full dimensional concentration. (2019). arXiv:1902.08521

  21. Modena, S., Szèkelyhidi Jr., L.: Non-uniqueness for the transport equation with Sobolev vector fields. Accepted paper on Annals of PDE (2018)

  22. Modena, S., Szèkelyhidi Jr., L.: Non-renormalized solutions to the continuity equation. (2018). arXiv:1806.09145

  23. Nguyen, Q.H.: Quantitative estimates for regular Lagrangian flows with \(BV\) vector fields. (2018). http://cvgmt.sns.it/paper/3848/

Download references

Acknowledgements

This research has been supported by the ERC Starting Grant 676675 FLIRT. We thank the anonymous referee and Làszlò Szèkelyhidi for the careful reading of the paper and for several useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Crippa.

Additional information

Communicated by C. De Lellis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciampa, G., Crippa, G. & Spirito, S. Smooth approximation is not a selection principle for the transport equation with rough vector field. Calc. Var. 59, 13 (2020). https://doi.org/10.1007/s00526-019-1659-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1659-0

Mathematics Subject Classification

Navigation