Skip to main content
Log in

General volumes in the Orlicz–Brunn–Minkowski theory and a related Minkowski problem II

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

For convex bodies K in \(\mathbb {R}^n\) containing the origin in their interiors, the general dual volume and the general dual Orlicz curvature measure \(\widetilde{C}_{G, \psi }(K, \cdot )\) were recently introduced for certain classes of functions G and \(\psi \). We extend these concepts to more general functions G and to compact convex sets K containing the origin (but not necessarily in their interiors). Some basic properties of the general dual volume and of the dual Orlicz curvature measure are provided which are required to study a Minkowski-type problem for the dual Orlicz curvature measure. The Minkowski problem asks to characterize Borel measures \(\mu \) on the unit sphere for which there is a convex body K in \(\mathbb {R}^n\) containing the origin such that \(\mu \) equals \(\widetilde{C}_{G, \psi }(K, \cdot )\), up to a constant. A major step in the analysis concerns discrete measures \(\mu \), for which we prove the existence of convex polytopes containing the origin in their interiors solving the Minkowski problem. Under mild conditions on G and \(\psi \), solutions are obtained for general measures by an approximation argument. Our results generalize several previous works and provide more precise information about the solutions of the Minkowski problem when \(\mu \) is discrete or even.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Böröczky, K.J., Fodor, F.: The \(L_p\) dual Minkowski problem for \(p>1\) and \(q>0\). J. Differ. Equ. 266, 7980–8033 (2019)

    Article  Google Scholar 

  2. Böröczky, K.J., Fodor, F., Hug, D.: Intrinsic volumes of random polytopes with vertices on the boundary of a convex body. Trans. Am. Math. Soc. 365, 785–809 (2013)

    Article  MathSciNet  Google Scholar 

  3. Böröczky, K.J., Hegedűs, P., Zhu, G.: On the discrete logarithmic Minkowski problem. Int. Math. Res. Not. 1807–1838 (2016)

  4. Böröczky, K.J., Henk, M., Pollehn, H.: Subspace concentration of dual curvature measures of symmetric convex bodies. J. Differ. Geom. 109, 411–429 (2018)

    Article  MathSciNet  Google Scholar 

  5. Böröczky, K.J., Lutwak, E., Yang, D., Zhang, G.: The logarithmic Minkowski problem. J. Am. Math. Soc. 26, 831–852 (2013)

    Article  MathSciNet  Google Scholar 

  6. Böröczky, K.J., Lutwak, E., Yang, D., Zhang, G., Zhao, Y.: The dual Minkowski problem for symmetric convex bodies arXiv:1703.06259

  7. Chen, C., Huang, Y., Zhao, Y.: Smooth solutions to the \(L_p\) dual Minkowski problem. Math. Ann. 373, 953–976 (2019)

    Article  MathSciNet  Google Scholar 

  8. Chen, S., Li, Q.: On the planar dual Minkowski problem. Adv. Math. 333, 87–117 (2018)

    Article  MathSciNet  Google Scholar 

  9. Chen, S., Li, Q., Zhu, G.: On the \(L_p\) Monge–Ampère equation. J. Differ. Equ. 263, 4997–5011 (2017)

    Article  Google Scholar 

  10. Chen, S., Li, Q., Zhu, G.: The logarithmic Minkowski problem for non-symmetric measures. Trans. Am. Math. Soc. 371, 2623–2641 (2019)

    Article  MathSciNet  Google Scholar 

  11. Cianchi, A., Lutwak, E., Yang, D., Zhang, G.: Affine Moser–Trudinger and Morrey–Sobolev inequalities. Calc. Var. Partial Differ. Equ. 36, 419–436 (2009)

    Article  MathSciNet  Google Scholar 

  12. Gardner, R.J.: Geometric Tomography, 2nd edn. Cambridge University Press, New York (2006)

    Book  Google Scholar 

  13. Gardner, R.J., Hug, D., Weil, W.: The Orlicz–Brunn–Minkowski theory: a general framework, additions, and inequalities. J. Differ. Geom. 97, 427–476 (2014)

    Article  MathSciNet  Google Scholar 

  14. Gardner, R.J., Hug, D., Weil, W., Xing, S., Ye, D.: General volumes in the Orlicz–Brunn–Minkowski theory and a related Minkowski problem I. Calc. Var. Partial Differ. Equ. 58, 12 (2019)

    Article  MathSciNet  Google Scholar 

  15. Gruber, P.M.: Convex and Discrete Geometry. Springer, Berlin (2007)

    MATH  Google Scholar 

  16. Haberl, C., Lutwak, E., Yang, D., Zhang, G.: The even Orlicz Minkowski problem. Adv. Math. 224, 2485–2510 (2010)

    Article  MathSciNet  Google Scholar 

  17. Henk, M., Pollehn, H.: Necessary subspace concentration conditions for the even dual Minkowski problem. Adv. Math. 323, 114–141 (2018)

    Article  MathSciNet  Google Scholar 

  18. Hong, H., Ye, D., Zhang, N.: The \(p\)-capacitary Orlicz–Hadamard variational formula and Orlicz–Minkowski problems. Calc. Var. Partial Differ. Equ. 57, 5 (2018)

    Article  MathSciNet  Google Scholar 

  19. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  20. Huang, Q., He, B.: On the Orlicz Minkowski problem for polytopes. Discret. Comput. Geom. 48, 281–297 (2012)

    Article  MathSciNet  Google Scholar 

  21. Huang, Y., Zhao, Y.: On the \(L_p\) dual Minkowski problem. Adv. Math. 332, 57–84 (2018)

    Article  MathSciNet  Google Scholar 

  22. Huang, Y., Lutwak, E., Yang, D., Zhang, G.: Geometric measures in the dual Brunn–Minkowski theory and their associated Minkowski problems. Acta Math. 216, 325–388 (2016)

    Article  MathSciNet  Google Scholar 

  23. Hug, D.: Absolute continuity for curvature measures of convex sets I. Math. Nachr. 195, 139–158 (1998)

    Article  MathSciNet  Google Scholar 

  24. Hug, D.: Absolute continuity for curvature measures of convex sets II. Math. Z 232, 437–485 (1999)

    Article  MathSciNet  Google Scholar 

  25. Hug, D., Lutwak, E., Yang, D., Zhang, G.: On the \(L_p\) Minkowski problem for polytopes. Discret. Comput. Geom. 33, 699–715 (2005)

    Article  Google Scholar 

  26. Jiang, Y., Wu, Y.: On the \(2\)-dimensional dual Minkowski problem. J. Differ. Equ. 263, 3230–3243 (2017)

    Article  MathSciNet  Google Scholar 

  27. Li, A.: The generalization of Minkowski problems for polytopes. Geom. Dedic. 168, 245–264 (2014)

    Article  MathSciNet  Google Scholar 

  28. Li, Q., Sheng, W., Wang, X.: Flow by Gauss curvature to the Aleksandrov and dual Minkowski problems. J. Eur. Math. Soc. (JEMS). arXiv:1712.07774

  29. Luo, X., Ye, D., Zhu, B.: On the polar Orlicz–Minkowski problems and the \(p\)-capacitary Orlicz–Petty bodies. Indiana Univ. Math. J. arXiv:1802.07777

  30. Lutwak, E.: Dual mixed volumes. Pac. J. Math. 58, 531–538 (1975)

    Article  MathSciNet  Google Scholar 

  31. Lutwak, E.: Intersection bodies and dual mixed volumes. Adv. Math. 71, 232–261 (1988)

    Article  MathSciNet  Google Scholar 

  32. Lutwak, E.: The Brunn–Minkowski–Firey theory I: mixed volumes and the Minkowski problem. J. Differ. Geom. 38, 131–150 (1993)

    Article  MathSciNet  Google Scholar 

  33. Lutwak, E., Yang, D., Zhang, G.: Sharp affine \(L_{p}\) Sobolev inequalities. J. Differ. Geom. 62, 17–38 (2002)

    Article  Google Scholar 

  34. Lutwak, E., Yang, D., Zhang, G.: On the \(L_p\) Minkowski problem. Trans. Am. Math. Soc. 356, 4359–4370 (2004)

    Article  Google Scholar 

  35. Lutwak, E., Yang, D., Zhang, G.: \(L_p\) dual curvature measures. Adv. Math. 329, 85–132 (2018)

    Article  MathSciNet  Google Scholar 

  36. Minkowski, H.: Allgemeine Lehrsätze über die convexen Polyeder, Nachr. Ges. Wiss. Göttingen, (1897), 198–219. Gesammelte Abhandlungen, vol. II, Teubner, Leipzig, 1911, pp. 103–121

  37. Minkowski, H.: Volumen und Oberfläche, Math. Ann. 57 (1903), 447–495. Gesammelte Abhandlungen, vol. II, Teubner, Leipzig, 1911, pp. 230–276

  38. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, 2nd edn. Cambridge University Press, Cambridge (2014)

    MATH  Google Scholar 

  39. Xing, S., Ye, D.: On the general dual Orlicz–Minkowski problem. Indiana Univ. Math. J. arXiv:1802.06331

  40. Zhao, Y.: The dual Minkowski problem for negative indices. Calc. Var. Partial Differ. Equ. 56, 18 (2017)

    Article  MathSciNet  Google Scholar 

  41. Zhao, Y.: Existence of solutions to the even dual Minkowski problem. J. Differ. Geom. 110, 543–572 (2018)

    Article  MathSciNet  Google Scholar 

  42. Zhu, B., Hong, H., Ye, D.: The Orlicz–Petty bodies. Int. Math. Res. Not. 2018, 4356–4403 (2018)

    Article  MathSciNet  Google Scholar 

  43. Zhu, B., Xing, S., Ye, D.: The dual Orlicz–Minkowski problem. J. Geom. Anal. 28, 3829–3855 (2018)

    Article  MathSciNet  Google Scholar 

  44. Zhu, G.: The logarithmic Minkowski problem for polytopes. Adv. Math. 262, 909–931 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deping Ye.

Additional information

Communicated by N. Trudinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

First author supported in part by U.S. National Science Foundation Grant DMS-1402929. Second author supported in part by German Research Foundation (DFG) Grants HU 1874/4-2 and FOR 1548. Fourth author supported in part by an NSERC Grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gardner, R.J., Hug, D., Xing, S. et al. General volumes in the Orlicz–Brunn–Minkowski theory and a related Minkowski problem II. Calc. Var. 59, 15 (2020). https://doi.org/10.1007/s00526-019-1657-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1657-2

Mathematics Subject Classification

Navigation