Skip to main content
Log in

Nonlinear stability and instability in the Rayleigh–Taylor problem of stratified compressible MHD fluids

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We establish the stability/instability criteria for the stratified compressible magnetic Rayleigh–Taylor (RT) problem in Lagrangian coordinates. More precisely, under the stability condition \(\varXi <1\) (under such case, the third component of impressed magnetic field is not zero), we show the existence of a unique solution with an algebraic decay in time for the (compressible) magnetic RT problem with proper initial data. The stability result in particular shows that a sufficiently large (impressed) vertical magnetic field can inhibit the growth of the RT instability. On the other hand, if \(\varXi >1\), there exists an unstable solution to the magnetic RT problem in the Hadamard sense. This in particular shows that the RT instability still occurs when the strength of an magnetic field is small or the magnetic field is horizontal. Moreover, by analyzing the stability condition in the magnetic RT problem for vertical magnetic fields, we can observe that the compressibility destroys the stabilizing effect of magnetic fields in the vertical direction. Fortunately, the instability in the vertical direction can be inhibited by the stabilizing effect of the pressure, which also plays an important role in the proof of the stability of the magnetic RT problem. In addition, we extend the results for the magnetic RT problem to the compressible viscoelastic RT problem, and find that the stabilizing effect of elasticity is stronger than that of the magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abidi, H., Zhang, P.: On the global solution of a 3-D MHD system with initial data near equilibrium. Commun. Pure Appl. Math. 70(8), 1509–1561 (2017)

    Article  MathSciNet  Google Scholar 

  2. Adams, R.A.: Sobolev Space. Academic Press, New York (1975)

    Google Scholar 

  3. Adams, R.A., John, J.F.F.: Sobolev Space. Academic Press, New York (2005)

    Google Scholar 

  4. Barrett, J.W., Lu, Y., Süli, E.: Existence of large-data finite-energy global weak solutions to a compressible Oldroyd-B model. Commun. Math. Sci. 15, 1265–1323 (2017)

    Article  MathSciNet  Google Scholar 

  5. Boffetta, G., Mazzino, A., Musacchio, S., Vozella, L.: Rayleigh–Taylor instability in a viscoelastic binary fluid. J. Fluid Mech. 643, 127–136 (2010)

    Article  Google Scholar 

  6. Bollada, P.C., Phillips, T.N.: On the mathematical modelling of a compressible viscoelastic fluid. Arch. Ration. Mech. Anal. 205, 1–26 (2012)

    Article  MathSciNet  Google Scholar 

  7. Bucciantini, N., Amato, E., Bandiera, R., Blondin, J.M., Zanna, L.D.: Magnetic Rayleigh–Taylor instability for pulsar wind nebulae in expanding supernova remnants. Astron. Astrophys. 423, 253–265 (2004)

    Article  Google Scholar 

  8. Chandrasekhar, S.: Hydrodynamic and hydromagnetic stability. In: The International Series of Monographson Physics. Clarendon Press, Oxford (1961)

  9. Fan, D.Y., Zi, R.Z.: Strong solutions of 3D compressible Oldroyd-B fluids. Math. Methods Appl. Sci. 36, 1423–1439 (2013)

    Article  MathSciNet  Google Scholar 

  10. Friedlander, S., Strauss, W., Vishik, M.: Nonlinear instability in an ideal fluid. Ann. I. H. Poincare-An. 14, 187–209 (1997)

    Article  MathSciNet  Google Scholar 

  11. Giaquinta, M., Martinazzi, L.: An introduction to the regularity theory for elliptic systems. In: Harmonic Maps and Minimal Graphs. Scuola Normale Superiore Pisa, Pisa (2012)

  12. Guo, Y., Hallstrom, C., Spirn, D.: Dynamics near unstable, interfacial fluids. Commun. Math. Phys. 270, 635–689 (2007)

    Article  MathSciNet  Google Scholar 

  13. Guo, Y., Tice, I.: Compressible, inviscid Rayleigh–Taylor instability. Indiana Univ. Math. J. 60, 677–712 (2011)

    Article  MathSciNet  Google Scholar 

  14. Guo, Y., Tice, I.: Linear Rayleigh–Taylor instability for viscous, compressible fluids. SIAM J. Math. Anal. 42, 1688–1720 (2011)

    Article  MathSciNet  Google Scholar 

  15. Guo, Y., Tice, I.: Almost exponential decay of periodic viscous surface waves without surface tension. Arch. Ration. Mech. Anal. 207, 459–531 (2013)

    Article  MathSciNet  Google Scholar 

  16. Guo, Y., Tice, I.: Decay of viscous surface waves without surface tension in horizontally infinite domains. Anal. PDE 6, 1429–1533 (2013)

    Article  MathSciNet  Google Scholar 

  17. Guo, Y., Strauss, W.A.: Instability of periodic BGK equilibria. Commun. Pure Appl. Math. 48, 861–894 (1995)

    Article  MathSciNet  Google Scholar 

  18. Guo, Y., WA, S.: Nonlinear instability of double-humped equilibria. Ann. I. H. Poincare-An. 12, 339–352 (1995)

    Article  MathSciNet  Google Scholar 

  19. Hester, J.J., Stone, J.M., Scowen, Paul A.: WFPC2 studies of the crab nebula. III. Magnetic Rayleigh–Taylor instabilities and the origin of the filaments. Astrophys. J. 456, 225–233 (1996)

    Article  Google Scholar 

  20. Hide, R.: Waves in a heavy, viscous, incompressible, electrically conducting fluid of variable density, in the presence of a magnetic field. Proc. R. Soc. Lond. Ser. A. 233, 376–396 (1955)

    Article  MathSciNet  Google Scholar 

  21. Hillier, A., Isobe, H., Shibata, K., Berger, T.: Numerical simulations of the magnetic Rayleigh–Taylor instability in the Kippenhahn–Schlüter prominence model. II. Reconnection-triggered downflows. Astrophys. J. 756, 110 (2012)

    Article  Google Scholar 

  22. Hillier, A.S.: On the nature of the magnetic Rayleigh–Taylor instability in astrophysical plasma: the case of uniform magnetic field strength. Mon. Notices Roy. Astron. Soc. 462, 2256–2265 (2016)

    Article  Google Scholar 

  23. Hu, X.P.: Global existence for two dimensional compressible magnetohydrodynamic flows with zero magnetic diffusivity. arXiv:1405.0274v1 [math.AP] 1 May 2014 (2014)

  24. Hu, X.P., Wang, D.H.: Local strong solution to the compressible viscoelastic flow with large data. J. Differ. Equ. 249, 1179–1198 (2010)

    Article  MathSciNet  Google Scholar 

  25. Hu, X.P., Wang, D.H.: Global existence for the multi-dimensional compressible viscoelastic flows. J. Differ. Equ. 250, 1200–1231 (2011)

    Article  MathSciNet  Google Scholar 

  26. Hu, X.P., Wang, D.H.: Strong solutions to the three-dimensional compressible viscoelastic fluids. J. Differ. Equ. 252, 4027–4067 (2012)

    Article  MathSciNet  Google Scholar 

  27. Hu, X.P., Wang, D.H.: The initial-boundary value problem for the compressible viscoelastic flows. Discrete Contin. Dyn. Syst. 35, 917–934 (2015)

    Article  MathSciNet  Google Scholar 

  28. Hu, X.P., Wu, G.C.: Global existence and optimal decay rates for three-dimensional compressible viscoelastic flows. SIAM J. Math. Anal. 45, 2815–2833 (2013)

    Article  MathSciNet  Google Scholar 

  29. Hwang, H.J.: Variational approach to nonlinear gravity-driven instability in a MHD setting. Quart. Appl. Math. 66, 303–324 (2008)

    Article  MathSciNet  Google Scholar 

  30. Isobe, H., Miyagoshi, T., Shibata, K., Yokoyam, T.: Three-dimensional simulation of solar emerging flux using the earth simulator I. Magnetic Rayleigh–Taylor instability at the top of the emerging flux as the origin of filamentary structure. Publ. Astron. Soc. Jpn. 58, 423–438 (2006)

    Article  Google Scholar 

  31. Isobe, H., Miyagoshi, T., Shibata, K., Yokoyam, T.: Filamentary structure on the Sun from the magnetic Rayleigh–Taylor instability. Nature 434, 478–481 (2005)

    Article  Google Scholar 

  32. Jang, J., Tice, I., Wang, Y.J.: The compressible viscous surface-internal wave problem: local well-posedness. SIAM J. Math. Anal. 48, 2602–2673 (2016)

    Article  MathSciNet  Google Scholar 

  33. Jang, J., Tice, I., Wang, Y.J.: The compressible viscous surface-internal wave problem: stability and vanishing surface tension limit. Commun. Math. Phys. 343, 1039–1113 (2016)

    Article  MathSciNet  Google Scholar 

  34. Jiang, F., Jiang, S.: On instability and stability of three-dimensional gravity flows in a bounded domain. Adv. Math. 264, 831–863 (2014)

    Article  MathSciNet  Google Scholar 

  35. Jiang, F., Jiang, S.: On linear instability and stability of the Rayleigh–Taylor problem in magnetohydrodynamics. J. Math. Fluid Mech. 17, 639–668 (2015)

    Article  MathSciNet  Google Scholar 

  36. Jiang, F., Jiang, S.: On the stabilizing effect of the magnetic field in the magnetic Rayleigh–Taylor problem. SIAM J. Math. Anal. 50, 491–540 (2018)

    Article  MathSciNet  Google Scholar 

  37. Jiang, F., Jiang, S.: On the dynamical stability and instability of Parker problem. Physica D (2019). https://doi.org/10.1016/j.physd.2018.11.004

  38. Jiang, F., Jiang, S., Wang, W.W.: Nonlinear Rayleigh–Taylor instability in nonhomogeneous incompressible viscous magnetohydrodynamic fluids. Discrete Contin. Dyn. Syst. 9, 1853–1898 (2016)

    Article  Google Scholar 

  39. Jiang, F., Jiang, S., Wang, Y.J.: On the Rayleigh–Taylor instability for the incompressible viscous magnetohydrodynamic equations. Commun. Partial Differ. Equ. 39, 399–438 (2014)

    Article  MathSciNet  Google Scholar 

  40. Jiang, F., Jiang, S., Wu, G.C.: On stabilizing effect of elasticity in the Rayleigh–Taylor problem of stratified viscoelastic fluids. J. Funct. Anal. 272, 3763–3824 (2017)

    Article  MathSciNet  Google Scholar 

  41. Jiang, F., Wu, G.C., Zhong, X.: On exponential stability of gravity driven viscoelastic flows. J. Differ. Equ. 260, 7498–7534 (2016)

    Article  MathSciNet  Google Scholar 

  42. Jun, B.I., Norman, M.L., Stone, J.M.: A numerical study of Rayleigh–Taylor instability in magnetic fluids. Astrophys. J. 453, 332–349 (1966)

    Article  Google Scholar 

  43. Kruskal, M., Schwarzchild, M.: Some instabilities of a completely ionized plasma. Proc. R. Soc. Lond. Ser. A. 223, 348–360 (1954)

    Article  MathSciNet  Google Scholar 

  44. Lee, J.M.: Introduction to Smooth Manifolds. Springer, Berlin (2013)

    MATH  Google Scholar 

  45. Lei, Z., Liu, C., Zhou, Y.: Global solutions for incompressible viscoelastic fluids. Arch. Ration. Mech. Anal. 188, 371–398 (2008)

    Article  MathSciNet  Google Scholar 

  46. Lin, F.H.: Some analytical issues for elastic complex fluids. Commun. Pure Appl. Math. 65, 893–919 (2012)

    Article  MathSciNet  Google Scholar 

  47. Lin, F.H., Liu, C., Zhang, P.: On hydrodynamics of viscoelastic fluids. Commun. Pure Appl. Math. 58, 1437–1471 (2005)

    Article  MathSciNet  Google Scholar 

  48. Lin, F.H., Zhang, P.: On the initial-boundary value problem of the incompressible viscoelastic fluid system. Commun. Pure Appl. Math. 61, 539–558 (2008)

    Article  MathSciNet  Google Scholar 

  49. Lin, F.H., Zhang, P.: Global small solutions to an mhd type system: the three-dimensional. Commun. Pure. Appl. Math. 67, 531–580 (2014)

    Article  MathSciNet  Google Scholar 

  50. Pacitto, G., Flament, C., Bacri, J.C., Widom, M.: Rayleigh-Taylor instability with magnetic fluids: experiment and theory. Phys. Rev. E. 62, 7941 (2000)

    Article  Google Scholar 

  51. Qian, J.Z., Zhang, Z.F.: Global well-posedness for compressible viscoelastic fluids near equilibrium. Arch. Ration. Mech. Anal. 198, 835–868 (2010)

    Article  MathSciNet  Google Scholar 

  52. Rayleigh, L.: Investigation of the character of the equilibrium of an in compressible heavy fluid of variable density. Proc. Lond. Math. Soc. 14, 170–177 (1883)

    MathSciNet  MATH  Google Scholar 

  53. Ren, X.X., Wu, J.H., Xiang, Z.Y., Zhang, Z.F.: Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion. J. Funct. Anal. 267, 503–541 (2014)

    Article  MathSciNet  Google Scholar 

  54. Sharma, R.C., Sharma, K.C.: Rayleigh–Taylor instability of two viscoelastic superposed fluids. Acta Phys. Acad. Sci. Hung. 45, 213–220 (1978)

    Article  Google Scholar 

  55. Stone, M.J., Gardiner, T.: Nonlinear evolution of the magnetohydrodynamic Rayleigh–Taylor instability. Phys. Fluids 19, 306–327 (2007)

    Article  Google Scholar 

  56. Stone, M.J., Gardiner, T.: The magnetic Rayleigh–Tayolor instability in three dimensions. Astrophys. J. 671, 1726–1735 (2007)

    Article  Google Scholar 

  57. Tan, Z., Wang, Y.J.: Global well-posedness of an initial–boundary value problem for viscous non-resistive MHD systems. SIAM J. Math. Anal. 50, 1432–1470 (2018)

    Article  MathSciNet  Google Scholar 

  58. Taylor, G.I.: The stability of liquid surface when accelerated in a direction perpendicular to their planes. Proc. R. Soc. Lond. Ser. A. 201, 192–196 (1950)

    Article  Google Scholar 

  59. Wang, J.H.: Two-Dimensional Nonsteady Flows and Shock Waves. Science Press, Beijing (1994). (in Chinese)

    Google Scholar 

  60. Wang, Y.J.: Sharp nonlinear stability criterion of viscous non-resistive MHD internal waves in 3D. Arch. Ration. Mech. Anal. (2018). https://doi.org/10.1007/s00205-018-1307-4

  61. Wang, Y.J., Tice, I., Kim, C.: The viscous surface-internal wave problem: global well-posedness and decay. Arch. Ration. Mech. Anal. 212, 1–92 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for invaluable suggestions, which improve the presentation of this paper. The authors also thank Dr. Weicheng Zhang for pointing out Dirichlets approximation theorem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Jiang.

Additional information

Communicated by F. H. Lin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of Fei Jiang was supported by NSFC (Grant No. 11671086) and the NSF of Fujian Province of China (Grant No. 2016J06001), and the research of Song Jiang by NSFC (Grant Nos. 11631008 and 11371065).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, F., Jiang, S. Nonlinear stability and instability in the Rayleigh–Taylor problem of stratified compressible MHD fluids. Calc. Var. 58, 29 (2019). https://doi.org/10.1007/s00526-018-1477-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1477-9

Mathematics Subject Classification

Navigation