Skip to main content
Log in

On Linear Instability and Stability of the Rayleigh–Taylor Problem in Magnetohydrodynamics

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We investigate the stabilizing effects of the magnetic fields in the linearized magnetic Rayleigh–Taylor (RT) problem of a nonhomogeneous incompressible viscous magnetohydrodynamic fluid of zero resistivity in the presence of a uniform gravitational field in a three-dimensional bounded domain, in which the velocity of the fluid is non-slip on the boundary. By adapting a modified variational method and careful deriving a priori estimates, we establish a criterion for the instability/stability of the linearized problem around a magnetic RT equilibrium state. In the criterion, we find a new phenomenon that a sufficiently strong horizontal magnetic field has the same stabilizing effect as that of the vertical magnetic field on growth of the magnetic RT instability. In addition, we further study the corresponding compressible case, i.e., the Parker (or magnetic buoyancy) problem, for which the strength of a horizontal magnetic field decreases with height, and also show the stabilizing effect of a sufficiently large magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acheson D.J.: Instability by magnetic buoyancy. Solar Phys. 62, 23–50 (1979)

    Article  ADS  Google Scholar 

  2. Barker A.J., Silvers L.J., Proctor M.R., Weiss N.O.: Magnetic buoyancy instabilities in the presence of magnetic flux pumping at the base of the solar convection zone. Mon. Notices R. Astron. Soc. 424, 115–127 (2012)

    Article  ADS  Google Scholar 

  3. Cabannes H.: Theoretical Magnetofluiddynamics. Academic Press, New York (1970)

    Google Scholar 

  4. Chandrasekhar S.: An Introduction to the Study of Stellar Structures. University of Chicago Press, Chicago (1938)

    Google Scholar 

  5. Cho Y., Kim H.: Unique solvability for the density-dependent Navier–Stokes equations. Nonlinear Anal. 59, 465–489 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cowling T.G.: Magnetohydrodynamics, vol. 4. Interscience Publishers, New York (1957)

    Google Scholar 

  7. Fefferman C.L., McCormick D.S., Robinson J.C., Rodrigo J.L.: Higher order commutator estimates and local existence for the non-resistive MHD equations and related models. J. Funct. Anal. 267, 1035–1056 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  8. Friedlander S., Nataša P., Vicol V.: Nonlinear instability for the critically dissipative quasi-geostrophic equation. Commun. Math. Phys. 292, 797–810 (2009)

    Article  MATH  ADS  Google Scholar 

  9. Friedlander S., Strauss W., Vishik M.: Nonlinear instability in an ideal fluid. Ann. Inst. H. Poincare Anal. Non Lineaire 14, 187–209 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Friedlander S., Vishik M.: Nonlinear instability in two dimensional ideal fluids: the case of a dominant eigenvalue. Commun. Math. Phys. 243, 261–273 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Fukui Y. et al.: Molecular loops in the galactic center: evidence for magnetic flotation. Science 314, 106–109 (2006)

    Article  ADS  Google Scholar 

  12. Galdi G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations: Steady-State Problems. Springer, New York (2011)

    Book  Google Scholar 

  13. Giaquinta, M., Martinazzi, L.: An introduction to the regularity theory for elliptic systems. Harmonic maps and minimal graphs. Scuola Normale Superiore Pisa, Pisa (2012)

  14. Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Germany (1998)

    Google Scholar 

  15. Grafakos L.: Classical Fourier Analysis, 2nd edn. Springer, Germany (2008)

    Google Scholar 

  16. Guo Y., Strauss W.: Instability of periodic BGK equilibria. Commun. Pure Appl. Math. 48, 861–894 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Guo Y., Strauss W.: Nonlinear instability of double-humped equilibria. Ann. Inst. H. Poincare Anal. Non Linéaire 12, 339–352 (1995)

    MATH  MathSciNet  Google Scholar 

  18. Guo Y., Tice I.: Compressible, inviscid Rayleigh–Taylor instability. Indiana Univ. Math. J. 60, 677–712 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Guo Y., Tice I.: Linear Rayleigh–Taylor instability for viscous, compressible fluids. SIAM J. Math. Anal. 42, 1688–1720 (2011)

    Article  MathSciNet  Google Scholar 

  20. Hide R.: Waves in a heavy, viscous, incompressible, electrically conducting fluid of variable density, in the presence of a magnetic field. Proc. R. Soc. Lond. A. 233, 376–396 (1955)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Hwang H.J.: Variational approach to nonlinear gravity-driven instability in a MHD setting. Q. Appl. Math. 66, 303–324 (2008)

    Article  MATH  Google Scholar 

  22. Hwang H.J., Guo Y.: On the dynamical Rayleigh–Taylor instability. Arch. Ration. Mech. Anal. 167, 235–253 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Jiang F., Jiang S.: On instability and stability of three-dimensional gravity flows in a bounded domain. Adv. Math. 264, 831–863 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  24. Jiang F., Jiang S., Ni G.X.: Nonlinear instability for nonhomogeneous incompressible viscous fluids. Sci. China Math. 56, 665–686 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  25. Jiang, F., Jiang, S., Wang, W.W.: Nonlinear Rayleigh–Taylor instability in nonhomogeneous incompressible viscous magnetohydrodynamic fluids (2014). arXiv:1304.5636

  26. Jiang F., Jiang S., Wang Y.J.: On the Rayleigh–Taylor instability for the incompressible viscous magnetohydrodynamic equations. Commun. Partial Differ. Equ. 39, 399–438 (2014)

    Article  MATH  Google Scholar 

  27. Kim, J., Ryu, D., Hong, S.S., Lee, S.M., Franco, J.: The Parker instability. In: Alfaro, E.J.,Pérez, E., Franco, J. (eds.) How does the Galaxy Work? Kluwer Academic Publishers, USA, pp. 315–322 (2005)

  28. Kruskal M., Schwarzschild M.: Some instabilities of a completely ionized plasma. Proc. R. Soc. Lond. A 233, 348–360 (1954)

    Article  MathSciNet  ADS  Google Scholar 

  29. Kudoh, T., Yokoyama, T., Matsumoto, R.: Magnetohydrodynamic numerical simulation of Parker instability in interstellar gas with cosmic ray pressure. In: Proceedings of the 12th Asia Pacific Physics Conference, JPS Conf. Proc., vol. I, p. 015105 (2014)

  30. Kulikovskiy A.G., Lyubimov G.A.: Magnetohydrodynamics. Addison Wesley Longman Publishing Co., Reading (1965)

    Google Scholar 

  31. Kuwabara T., Nakamura K., Ko C.: Nonlinear parker instability with the effect of cosmic-ray diffusion. Astrophys. J. 607, 828 (2004)

    Article  ADS  Google Scholar 

  32. Landau, L., Lifshitz, E., Pitaevskii, L.: Electrodynamics of Continuous Media, vol. 8, Course of theoretical physics, 45 (1984)

  33. Lin F.H., Zhang P.: Global small solutions to an MHD type system: the three-dimensional. Commun. Pure Appl. Math. 67, 531–580 (2014)

    Article  MATH  Google Scholar 

  34. Machida M., Nakamura K.E., Kudoh T., Akahori T., Sofue Y., Matsumoto R.: Dynamo activities driven by magnetorotational instability and the parker instability in galactic gaseous disks. Astrophys. J. 764, 81 (2013)

    Article  ADS  Google Scholar 

  35. Mizerski K.A., Davies C.R., Hughes D.W.: Short-wavelength magnetic buoyancy instability. Astrophys. J. Suppl. Ser. 205, 498–518 (2013)

    Article  Google Scholar 

  36. Novotnỳ A., Straškraba I.: Introduction to the Mathematical Theory of Compressible Flow. Oxford University Press, USA (2004)

    Google Scholar 

  37. Parker E.N.: The formation of sunspots from the solar toroidal field. Astrophys. J. 121, 491–507 (1955)

    Article  ADS  Google Scholar 

  38. Parker E.N.: The dynamical state of the interstellar gas and field. Astrophys. J. 145, 811–833 (1966)

    Article  ADS  Google Scholar 

  39. Rayleigh L.: Analytic solutions of the Rayleigh equations for linear density profiles. Proc. Lond. Math. Soc. 14, 170–177 (1883)

    MATH  MathSciNet  Google Scholar 

  40. Wang Y.J.: Critical magnetic number in the MHD Rayleigh–Taylor instability. J. Math. Phys. 53, 073701 (2012)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Jiang.

Additional information

Communicated by S. Friedlander

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, F., Jiang, S. On Linear Instability and Stability of the Rayleigh–Taylor Problem in Magnetohydrodynamics. J. Math. Fluid Mech. 17, 639–668 (2015). https://doi.org/10.1007/s00021-015-0221-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-015-0221-x

Mathematics Subject Classification

Keywords

Navigation