Skip to main content
Log in

Higher differentiability for solutions to a class of obstacle problems

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We establish the higher differentiability of integer and fractional order of the solutions to a class of obstacle problems assuming that the gradient of the obstacle possesses an extra (integer or fractional) differentiability property. We deal with the case in which the solutions to the obstacle problems satisfy a variational inequality of the form

$$\begin{aligned} \int _{\Omega } \langle \mathcal {A}(x, Du), D(\varphi - u) \rangle \, dx \ge 0 \qquad \forall \varphi \in \mathcal {K}_{\psi }(\Omega ) \end{aligned}$$

where \(\mathcal {A}\) is a p-harmonic type operator, \(\psi \in W^{1,p}(\Omega )\) is a fixed function called obstacle and \(\mathcal {K}_{\psi }=\{w \in W^{1,p}(\Omega ): w \ge \psi \,\,\) a.e. in \(\Omega \}\) is the class of the admissible functions. We prove that an extra differentiability assumption on the gradient of the obstacle transfers to Du with no losses in the natural exponent of integrability, provided the partial map \(x\mapsto \mathcal {A}(x,\xi )\) possesses a suitable differentiability property measured either in the scale of the Sobolev space \(W^{1,n}\) or in that of the critical Besov–Lipschitz spaces \(B^\alpha _{\frac{n}{\alpha }, q}\), for a suitable \(1\le q\le +\infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baiocchi, C., Capelo, A.: Disequazioni variazionali e quasi variazionali. Applicazioni a problemi di frontiera libera, Quaderni U.M.I. Pitagora, Bologna (1978). English transl. J. Wiley, Chichester (1984)

  2. Baisón, A.L., Clop, A., Giova, R., Orobitg, J., Passarelli di Napoli, A.: Fractional differentiability for solutions of nonlinear elliptic equations. Potential Anal. 46(3), 403–430 (2017)

    Article  MathSciNet  Google Scholar 

  3. Baroni, P.: Lorentz estimates for obstacle parabolic problems. Nonlinear Anal. 96, 167–188 (2014)

    Article  MathSciNet  Google Scholar 

  4. Bildhauer, M., Fuchs, M., Mingione, G.: A priori gradient bounds and local \(\cal{C}^{1, \alpha }\)-estimates for (double) obstacle problems under non-standard growth conditions. Z. Anal. Anwend. 20(4), 959–985 (2001)

    Article  Google Scholar 

  5. Bögelein, V., Duzaar, F., Mingione, G.: Degenerate problems with irregular obstacles. J. Reine Angew Math. 650, 107–160 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Bögelein, V., Lukkari, T., Scheven, C.: The obstacle problem for the porous medium equation. Math. Ann. 363(1), 455–499 (2015)

    Article  MathSciNet  Google Scholar 

  7. Brézis, H., Kinderlehrer, D.: The smoothness of solutions to nonlinear variational inequalities. Indiana Univ. Math. J. 23, 831–844 (1973–1974)

  8. Byun, S.S., Cho, Y., Ok, J.: Global gradient estimates for nonlinear obstacle problem with non standard growth. Forum Math. 28(4), 729–747 (2016)

    Article  MathSciNet  Google Scholar 

  9. Byun, S.S., Cho, Y., Wang, L.: Calderón–Zygmund theory for nonlinear elliptic problems with irregular obstacles. J. Funct. Anal. 263(10), 3117–3143 (2012)

    Article  MathSciNet  Google Scholar 

  10. Caffarelli, L.: The regularity of elliptic and parabolic free boundaries. Bull. Am. Math. Soc. 82, 616–618 (1976)

    Article  MathSciNet  Google Scholar 

  11. Caffarelli, L.A., Kinderlehrer, D.: Potential methods in variational inequalities. J. Anal. Math. 37, 285–295 (1980)

    Article  MathSciNet  Google Scholar 

  12. Chipot, M.: Variational Inequalities and Flow in Porous Media. Springer, Berlin (1984)

    Book  Google Scholar 

  13. Choe, H.: A regularity theory for a general class of quasilinear elliptic partial differential equations and obstacle problems. Arch. Ration. Mech. Anal. 114(4), 383–394 (1991)

    Article  MathSciNet  Google Scholar 

  14. Choe, H., Lewis, J.-L.: On the obstacle problem for quasilinear elliptic equations of \(p\) Laplacian type. SIAM J. Math. Anal. 22(3), 623–638 (1991)

    Article  MathSciNet  Google Scholar 

  15. Clop, A., Giova, R., Passarelli di Napoli., A.: Besov regularity for solutions of \(p\)-harmonic equations. Adv. Nonlinear Anal. (2017). https://doi.org/10.1515/anona-2017-0030

  16. Eleuteri, M.: Regularity results for a class of obstacle problems. Appl. Math. 52(2), 137–169 (2007)

    Article  MathSciNet  Google Scholar 

  17. Eleuteri, M., Habermann, J.: Regularity results for a class of obstacle problems under non standard growth conditions. J. Math. Anal. Appl. 344(2), 1120–1142 (2008)

    Article  MathSciNet  Google Scholar 

  18. Eleuteri, M., Habermann, J.: Calderón–Zygmund type estimates for a class of obstacle problems with \(p(x)\) growth. J. Math. Anal. Appl. 372(1), 140–161 (2010)

    Article  MathSciNet  Google Scholar 

  19. Eleuteri, M., Habermann, J.: A Hölder continuity result for a class of obstacle problems under non standard growth conditions. Math. Nachr. 284(11–12), 1404–1434 (2011)

    Article  MathSciNet  Google Scholar 

  20. Eleuteri, M., Harjulehto, P., Lukkari, T.: Global regularity and stability of solutions to obstacle problems with nonstandard growth. Rev. Mat. Complut. 26(1), 147–181 (2013)

    Article  MathSciNet  Google Scholar 

  21. Fichera, G.: Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Nat. Sez. Ia, 7(8), 91–140 (1963–1964)

  22. Friedman, A.: Variational Principles and Free Boundary Problems. Wiley, New York (1982)

    MATH  Google Scholar 

  23. Fuchs, M., Mingione, G.: Full \(\cal{C}^{1, \alpha }-\)regularity for free and constrained local minimizers of elliptic variational integrals with nearly linear growth. Manuscr. Math. 102, 227–250 (2000)

    Article  Google Scholar 

  24. Giova, R.: Higher differentiability for n-harmonic systems with Sobolev coefficients. J. Differ. Equ. 259(11), 5667–5687 (2015)

    Article  MathSciNet  Google Scholar 

  25. Giova, R., di Napoli, A.P.: Regularity results for a priori bounded minimizers of non-autonomous functionals with discontinuous coefficients. Adv. Calc. Var. (2018). https://doi.org/10.1515/acv-2016

  26. Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific Publishing Co, Singapore (2003)

    Book  Google Scholar 

  27. Hajłasz, P.: Sobolev spaces on an arbitrary metric space. Potential Anal. 5(4), 403–415 (1996)

    MathSciNet  MATH  Google Scholar 

  28. Haroske, D.: Envelopes and Sharp Embeddings of Function Spaces. Chapman and Hall CRC, Boca Raton (2006)

    Book  Google Scholar 

  29. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, Cambridge (1980)

    MATH  Google Scholar 

  30. Koskela, P., Yang, D., Zhou, Y.: Pointwise characterizations of Besov and Triebel–Lizorkin spaces and quasiconformal mappings. Adv. Math. 226(4), 3579–3621 (2011)

    Article  MathSciNet  Google Scholar 

  31. Kristensen, J., Mingione, G.: Boundary regularity in variational problems. Arch. Ration. Mech. Anal. 198, 369–455 (2010)

    Article  MathSciNet  Google Scholar 

  32. Kuusi, T., Mingione, G.: Universal potential estimates. J. Funct. Anal. 262(26), 4205–4269 (2012)

    Article  MathSciNet  Google Scholar 

  33. Kuusi, T., Mingione, G.: Guide to nonlinear potential estimates. Bull. Math. Sci. 4(1), 1–82 (2014)

    Article  MathSciNet  Google Scholar 

  34. Lindqvist, P.: Regularity for the gradient of the solution to a nonlinear obstacle problem with degenerate ellipticity. Nonlinear Anal. 12(11), 1245–1255 (1988)

    Article  MathSciNet  Google Scholar 

  35. Lions, J.L., Stampacchia, G.: Variational inequalities. Commun. Pure Appl. Math. 20, 493–519 (1967)

    Article  Google Scholar 

  36. Michael, J.H., Ziemer, W.P.: Interior regularity for solutions to obstacle problems. Nonlinear Anal. 10(12), 1427–1448 (1986)

    Article  MathSciNet  Google Scholar 

  37. Ok, J.: Regularity results for a class of obstacle problems with nonstandard growth. J. Math. Anal. Appl. 444(2), 957–979 (2016)

    Article  MathSciNet  Google Scholar 

  38. Ok, J.: Calderón–Zygmund estimates for a class of obstacle problems with nonstandard growth. Nonlinear Differ. Equ. Appl. 23, 50 (2016). https://doi.org/10.1007/s00030-016-0404-z

  39. Ok, J.: Gradient continuity for nonlinear obstacle problems. Mediterr. J. Math. 14, 16 (2017). https://doi.org/10.1007/s00009-016-0838-x

    Article  MathSciNet  MATH  Google Scholar 

  40. Passarelli di Napoli, A.: Higher differentiability of minimizers of variational integrals with Sobolev coefficients. Adv. Calc. Var. 7(1), 59–89 (2014)

    Article  MathSciNet  Google Scholar 

  41. Passarelli di Napoli, A.: Higher differentiability of solutions of elliptic systems with Sobolev coefficients: the case \(p = n = 2\). Potential Anal. 41(3), 715–735 (2014)

    Article  MathSciNet  Google Scholar 

  42. Passarelli di Napoli, A.: Regularity results for non-autonomous variational integrals with discontinuous coefficients. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl 26(4), 475–496 (2015)

    Article  MathSciNet  Google Scholar 

  43. Rodrigues, J.F.: Obstacle Problems in Mathematical Physics. Elsevier, Amsterdam (1987)

    MATH  Google Scholar 

  44. Stampacchia, G.: Formes bilineaires coercivitives sur les ensembles convexes. C. R. Acad. Sci. Paris 258, 4413–4416 (1964)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Eleuteri.

Additional information

Communicated by L. Ambrosio.

The work of Michela Eleuteri is supported by GNAMPA (Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni) of INdAM (Istituto Nazionale di Alta Matematica), through the projects GNAMPA 2016 “Regolarità e comportamento asintotico di soluzioni di equazioni paraboliche” (coord. Prof. S. Polidoro) and GNAMPA 2017 “Regolarità per problemi variazionali d’ostacolo e liberi” (coord. Prof. M. Focardi). The work of Antonia Passarelli di Napoli is supported by GNAMPA (Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni) of INdAM (Istituto Nazionale di Alta Matematica), through the projects GNAMPA 2016 “Problemi di Regolarità nel Calcolo delle Variazioni e di Approssimazione” (coord. Prof. M. Carozza) and GNAMPA 2017 “Approssimazione con operatori discreti e problemi di minimo per funzionali del calcolo delle variazioni con applicazioni all’imaging” (coord. Dott. D. Costarelli). The work of the authors is also supported by the University of Modena and Reggio Emilia through the project FAR2015 “Equazioni differenziali: problemi evolutivi, variazionali ed applicazioni” (coord. Prof. S. Polidoro). This reaserch started while A. Passarelli di Napoli was visiting the University of Modena and Reggio Emilia. The hospitality of this Institution is warmly aknowledged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eleuteri, M., Passarelli di Napoli, A. Higher differentiability for solutions to a class of obstacle problems. Calc. Var. 57, 115 (2018). https://doi.org/10.1007/s00526-018-1387-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1387-x

Mathematics Subject Classification

Navigation