Skip to main content
Log in

The Cheeger constant of a Jordan domain without necks

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We show that the maximal Cheeger set of a Jordan domain \(\Omega \) without necks is the union of all balls of radius \(r = h(\Omega )^{-1}\) contained in \(\Omega \). Here, \(h(\Omega )\) denotes the Cheeger constant of \(\Omega \), that is, the infimum of the ratio of perimeter over area among subsets of \(\Omega \), and a Cheeger set is a set attaining the infimum. The radius r is shown to be the unique number such that the area of the inner parallel set \(\Omega ^r\) is equal to \(\pi r^2\). The proof of the main theorem requires the combination of several intermediate facts, some of which are of interest in their own right. Examples are given demonstrating the generality of the result as well as the sharpness of our assumptions. In particular, as an application of the main theorem, we illustrate how to effectively approximate the Cheeger constant of the Koch snowflake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Under certain regularity assumptions on A, the outer Minkowski content of A is equal to the perimeter of A; see [3] for a treatment of the subject. In certain cases arising in our setting, these two quantities fail to coincide, but this is of no importance in our application.

References

  1. Alter, F., Caselles, V., Chambolle, A.: Evolution of characteristic functions of convex sets in the plane by the minimizing total variation flow. Interfaces Free Bound. 7(1), 29–53 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambrosio, L., Caselles, V., Masnou, S., Morel, J.-M.: Connected components of sets of finite perimeter and applications to image processing. J. Eur. Math. Soc. (JEMS) 3(1), 39–92 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ambrosio, L., Colesanti, A., Villa, E.: Outer Minkowski content for some classes of closed sets. Math. Ann. 342(4), 727–748 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Almgren, F.: Optimal isoperimetric inequalities. Indiana Univ. Math. J. 35(3), 451–547 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  5. Buttazzo, G., Carlier, G., Comte, M.: On the selection of maximal Cheeger sets. Differ. Integral Equ. 20(9), 991–1004 (2007)

    MATH  MathSciNet  Google Scholar 

  6. Bellettini, G., Caselles, V., Novaga, M.: The total variation flow in \(\mathbb{R}^N\). J. Differ. Equ. 184(2), 475–525 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Besicovitch, A.S.: Variants of a classical isoperimetric problem. Quart. J. Math. Oxford 3(2), 42–49 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  8. Burago, Y.D., Zalgaller, V.A.: Geometric inequalities, volume 285 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin: Translated from the Russian by A. B. Sosinskiĭ, Springer Series in Soviet Mathematics (1988)

  9. Caselles, V., Chambolle, A., Novaga, M.: Regularity for solutions of the total variation denoising problem. Rev. Mat. Iberoam. 27(1), 233–252 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Carlier, G., Comte, M., Peyré, G.: Approximation of maximal Cheeger sets by projection. M2AN. Math. Model. Numer. Anal. 43(1), 139–150 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Croft, H.T., Falconer, K.J., Guy, R.K.: Unsolved problems in geometry. Problem books in mathematics. Springer, New York (1994)

    MATH  Google Scholar 

  12. Cheeger, J.: A lower bound for the smallest eigenvalue of the Laplacian. In: Problems in Analysis (Papers dedicated to Salomon Bochner, 1969), pp. 195–199. Princeton University Press, Princeton (1970)

  13. Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93, 418–491 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  14. Finn, R.: A subsidiary variational problem and existence criteria for capillary surfaces. J. Reine Angew. Math 353, 196–214 (1984)

    MATH  MathSciNet  Google Scholar 

  15. Giusti, E.: On the equation of surfaces of prescribed mean curvature. Existence and uniqueness without boundary conditions. Invent. Math. 46(2), 111–137 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hassani, R., Ionescu, I.R., Lachand-Robert, T.: Shape optimization and supremal minimization approaches in landslides modeling. Appl. Math. Optim. 52(3), 349–364 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hild, P., Ionescu, I.R., Lachand-Robert, T., Roşca, I.: The blocking of an inhomogeneous Bingham fluid. Applications to landslides. M2AN Math. Model. Numer. Anal. 36(6), 1013–1026 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Howard, R., Treibergs, A.: A reverse isoperimetric inequality, stability and extremal theorems for plane curves with bounded curvature. Rocky Mt. J. Math. 25(2), 635–684 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ionescu, I.R., Lachand-Robert, T.: Generalized Cheeger sets related to landslides. Calc. Var. Partial Differ. Equ. 23(2), 227–249 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Keller, J.B.: Plate failure under pressure. SIAM Rev. 22(2), 227 (1980)

    Article  MATH  Google Scholar 

  21. Kawohl, B., Fridman, V.: Isoperimetric estimates for the first eigenvalue of the \(p\)-laplace operator and the Cheeger constant. Comment. Math. Univ. Carolin. 44(4), 659–667 (2003)

    MATH  MathSciNet  Google Scholar 

  22. Kawohl, B., Lachand-Robert, T.: Characterization of Cheeger sets for convex subsets of the plane. Pacific J. Math. 225(1), 103–118 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Krummel, B., Maggi, F.: Isoperimetry with upper mean curvature bounds and sharp stability estimates. Calc. Var. Partial Differ. Equ. 56(2), 53 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  24. Krejčiřík, D., Pratelli, A.: The Cheeger constant of curved strips. Pacific J. Math. 254(2), 309–333 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Leonardi, G.P.: An overview on the Cheeger problem. In: New Trends in Shape Optimization, volume 166 of Internat. Ser. Numer. Math., pp. 117–139. Springer (2015)

  26. Leonardi, G.P., Pratelli, A.: On the Cheeger sets in strips and non-convex domains. Calc. Var. Partial Differ. Equ. 55(1), 1–28 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lachand-Robert, T., Oudet, É.: Minimizing within convex bodies using a convex hull method. SIAM J. Optim. 16(2), 368–379 (2005). (electronic),

    Article  MATH  MathSciNet  Google Scholar 

  28. Leonardi, G.P., Saracco, G.: The prescribed mean curvature equation in weakly regular domains. Submitted, preprint available at http://cvgmt.sns.it/paper/3089/, (2016)

  29. Pestov, G., Ionin, V.: On the largest possible circle imbedded in a given closed curve. Dokl. Akad. Nauk SSSR 127, 1170–1172 (1959)

    MATH  MathSciNet  Google Scholar 

  30. Sagan, H.: Space-Filling Curves. Springer, New York (1994)

    Book  MATH  Google Scholar 

  31. Schneider, R.: Convex bodies: the Brunn–Minkowski theory, volume 151 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, expanded edition, (2014)

  32. Singmaster, D., Souppuris, D.J.: A constrained isoperimetric problem. Math. Proc. Camb. Philos. Soc. 83(1), 73–82 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  33. Steiner, J.: Über parallele flächen. Monatsber. Preuss. Akad. Wiss. 114–118, (1840)

  34. Steiner, J.: Sur le maximum et le minimum des figures dans le plan, sur la sphere et dans l’espace en general. J. Math. Pures Appl. 6, 105–170 (1841)

    Google Scholar 

  35. Stredulinsky, E., Ziemer, W.P.: Area minimizing sets subject to a volume constraint in a convex set. J. Geom. Anal. 7(4), 653–677 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  36. Weyl, H.: On the volume of tubes. Am. J. Math. 61(2), 461–472 (1939)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gian Paolo Leonardi.

Additional information

Communicated by L. Ambrosio.

G.P. Leonardi and G. Saracco have been supported by GNAMPA projects: Problemi isoperimetrici e teoria geometrica della misura in spazi metrici (2015) and Variational problems and geometric measure theory in metric spaces (2016). R. Neumayer is supported by the NSF Graduate Research Fellowship under Grant DGE-1110007.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonardi, G.P., Neumayer, R. & Saracco, G. The Cheeger constant of a Jordan domain without necks. Calc. Var. 56, 164 (2017). https://doi.org/10.1007/s00526-017-1263-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1263-0

Mathematics Subject Classification

Navigation