Skip to main content
Log in

Hölder regularity of quasiminimizers under generalized growth conditions

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We prove Harnack’s inequality for local (quasi)minimizers in generalized Orlicz spaces without polynomial growth or coercivity conditions. As a consequence, we obtain the local Hölder continuity of local (quasi)minimizers. The results include as special cases standard, variable exponent and double phase growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alaouia, M.K., Nabilab, T., Altanjia, M.: On some new non-linear diffusion models for the image filtering. Appl. Anal. 93(2), 269–280 (2014)

    Article  MathSciNet  Google Scholar 

  2. Avci, M., Pankov, A.: Multivalued elliptic operators with nonstandard growth. Adv Nonlinear Anal. (2016). doi:10.1515/anona-2016-0043

    Google Scholar 

  3. Baroni, P., Colombo, M., Mingione, G.: Harnack inequalities for double phase functionals. Nonlinear Anal. 121, 206–222 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baroni, P., Colombo, M., Mingione, G.: Non-autonomous functionals, borderline cases and related function classes. St Petersburg Math. J. 27, 347–379 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Björn, A., Björn, J.: Nonlinear potential theory on metric spaces. EMS Tracts in Mathematics, 17, European Mathematical Society (EMS), Zürich (2011)

  6. Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66(4), 1383–1406 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Colombo, M., Mingione, G.: Regularity for double phase variational problems. Arch. Ration. Mech. Anal. 215(2), 443–496 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Colombo, M., Mingione, G.: Bounded minimisers of double phase variational integrals. Arch. Ration. Mech. Anal. 218(1), 219–273 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Colombo, M., Mingione, G.: Calderón-Zygmund estimates and non-uniformly elliptic operators. J. Funct. Anal. 270, 1416–1478 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue spaces, Foundations and harmonic analysis. Birkhäuser/Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  11. Cruz-Uribe, D., Hästö, P.: Extrapolation and interpolation in generalized Orlicz spaces. Trans. Am. Math. Soc. (to appear)

  12. Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev spaces with variable exponents. Lecture Notes in Mathematics, vol. 2017. Springer, Heidelberg (2011)

  13. Fan, X.-L.: An imbedding theorem for Musielak–Sobolev spaces. Nonlinear Anal. 75(4), 1959–1971 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Giannetti, F., Passarelli di Napoli, A.: Regularity results for a new class of functionals with non-standard growth conditions. J. Differ. Eq. 254, 1280–1305 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

  16. Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific, Singapore (2003)

    Book  MATH  Google Scholar 

  17. Gwiazda, P., Wittbold, P., Wróblewska, A., Zimmermann, A.: Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces. J. Differ. Eq. 253(2), 635–666 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gwiazda, P., Wittbold, P., Wróblewska, A., Zimmermann, A.: Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces. J. Differ. Eq. 253(9), 2734–2738 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gwiazda, P., Wittbold, P., Wróblewska, A., Zimmermann, A.: Renormalized solutions to nonlinear parabolic problems in generalized Musielak–Orlicz spaces. Nonlinear Anal. 129, 1–36 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Harjulehto, P., Hästö, P.: Riesz potential in generalized Orlicz Spaces. Forum Math. 29(1), 229–244 (2017)

    Article  MathSciNet  Google Scholar 

  21. Harjulehto, P., Hästö, P., Klén, R.: Generalized Orlicz spaces and related PDE. Nonlinear Anal. 143, 155–173 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Harjulehto, P., Hästö, P., Latvala, V., Toivanen, O.: Critical variable exponent functionals in image restoration. Appl. Math. Lett. 26, 56–60 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Harjulehto, P., Kuusi, T., Lukkari, T., Marola, N., Parviainen, M.: Harnack’s inequality for quasiminimizers with non-standard growth conditions. J. Math. Anal. Appl. 344(1), 504–520 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hedberg, L.I.: On certain convolution inequalities. Proc. Am. Math. Soc. 36, 505–510 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hästö, P.: The maximal operator on generalized Orlicz spaces. J. Funct. Anal 269(12), 4038–4048 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hästö, P.: Corrigendum to “The maximal operator on generalized Orlicz spaces” [J. Funct. Anal. 269 (2015) 4038–4048]. J. Funct. Anal. 271(1), 240–243 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Krylov, N.V., Safonov, M.V.: A property of the solutions of parabolic equations with measurable coefficients, (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 44, 161–175 (1980)

    MathSciNet  Google Scholar 

  28. Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev’s inequality on Musielak–Orlicz–Morrey spaces. Bull. Sci. Math. 137, 76–96 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Approximate identities and Young type inequalities in Musielak–Orlicz spaces. Czechoslovak Math. J. 63(138)(4), 933–948 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev and Trudinger type inequalities on grand Musielak–Orlicz–Morrey spaces. Ann. Acad. Sci. Fenn. Math. 40(1), 403–426 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Maeda, F.-Y., Ohno, T., Shimomura, T.: Boundedness of the maximal operator on Musielak–Orlicz–Morrey spaces. Tohoku Math. J. (to appear)

  32. Marcellini, P.: Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions. Arch. Rational Mech. Anal. 105(3), 267–284 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  33. Marcellini, P.: Regularity and existance of solutions of elliptic equations with \(p, q\)-growth conditions. J. Differ. Eq. 50(1), 1–30 (1991)

    Article  MATH  Google Scholar 

  34. Mingione, G.: Regularity of minima: an invitation to the dark side of the calculus of variations. Appl. Math. 51(4), 355–426 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Musielak, J.: Orlicz spaces and modular spaces. Lecture Notes in Mathematics, vol. 1034. Springer, Berlin (1983)

  36. Ohno, T., Shimomura, T.: Trudinger’s inequality for Riesz potentials of functions in Musielak–Orlicz spaces. Bull. Sci. Math. 138(2), 225–235 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ohno, T., Shimomura, T.: Musielak–Orlicz–Sobolev spaces on metric measure spaces. Czechoslovak Math. J. 65(140)(2), 435–474 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ok, J.: Gradient estimates for elliptic equations with \(L^{p(\cdot )}\log L\) growth. Calc. Var. Partial Differ. Eq. 55(2), 1–30 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ok, J.: Regularity results for a class of obstacle problems with nonstandard growth. J. Math. Anal. Appl. 444(2), 957–979 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Pick, L., Růžička, M.: An example of a space \(L^{p(x)}\) on which the Hardy–Littlewood maximal operator is not bounded. Expo. Math. 19(4), 369–371 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Růžička, M.: Electrorheological fluids: modeling and mathematical theory. Lecture Notes in Mathematics, vol. 1748. Springer, Berlin (2000)

  42. Świerczewska-Gwiazda, A.: Nonlinear parabolic problems in Musielak–Orlicz spaces. Nonlinear Anal. 98, 48–65 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yang, D., Yuan, W., Zhuo, C.: Musielak–Orlicz Besov-type and Triebel–Lizorkin-type spaces. Rev. Mat. Complut. 27(1), 93–157 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Mat. 50, 675–710 (1986)

    MathSciNet  Google Scholar 

  45. Zhikov, V.V.: On Lavrentiev’s phenomenon. Russian J. Math. Phys. 3, 249–269 (1995)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Hästö.

Additional information

Communicated by L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harjulehto, P., Hästö, P. & Toivanen, O. Hölder regularity of quasiminimizers under generalized growth conditions. Calc. Var. 56, 22 (2017). https://doi.org/10.1007/s00526-017-1114-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1114-z

Mathematics Subject Classification

Navigation