Skip to main content
Log in

Stability of point defects of degree \(\pm \frac{1}{2}\) in a two-dimensional nematic liquid crystal model

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study k-radially symmetric solutions corresponding to topological defects of charge \(\frac{k}{2}\) for integer \(k\not = 0\) in the Landau-de Gennes model describing liquid crystals in two-dimensional domains. We show that the solutions whose radial profiles satisfy a natural sign invariance are stable when \(|k| = 1\) (unlike the case \(|k| > 1\) which we treated before). The proof crucially uses the monotonicity of the suitable components, obtained by making use of the cooperative character of the system. A uniqueness result for the radial profiles is also established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. In [26], \(a^2\) was assumed to be strictly positive. However, an inspection of the arguments therein allows an easy extension to the case \(a^2 = 0\).

  2. The existence of such solution was proved in [26].

  3. Equality can actually be shown using precise asymptotical behaviors of u and v at the origin and at infinity, but this weaker form suffices for our purpose here.

References

  1. Abramowitz, M., Stegun, I. A.: Handbook of mathematical functions: with formulas, graphs, and mathematical tables. No. 55. Courier Corporation (1964)

  2. Alama, S., Bronsard, L., Giorgi, T.: Uniqueness of symmetric vortex solutions in the Ginzburg–Landau model of superconductivity. J. Funct. Anal. 167(2), 399–424 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alama, S., Bronsard, L., Lamy, X.: Minimizers of the landau-de gennes energy around a spherical colloid particle. arXiv preprint arXiv:1504.00421 (2015)

  4. Ball, J.M., Zarnescu, A.: Orientability and energy minimization for liquid crystal models. Arch. Ration. Mech. Anal. 202(2), 493–535 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bauman, P., Philips, D.: Analysis of nematic liquid crystals with disclination lines. Arch. Ration. Mech. Anal. 205, 795–826 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bethuel, F., Brezis, H., Coleman, B.D., Hélein, F.: Bifurcation analysis of minimizing harmonic maps describing the equilibrium of nematic phases between cylinders. Arch. Ration. Mech. Anal. 118(2), 149–168 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bethuel, F., Brezis, H., Hélein, F.: Ginzburg–Landau vortices. In: Progress in Nonlinear Differential Equations and their Applications, vol. 13. Birkhäuser Boston Inc., Boston, MA (1994)

  8. Brezis, H., Coron, J.-M., Lieb, E.H.: Harmonic maps with defects. Commun. Math. Phys. 107(4), 649–705 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Canevari, G.: Biaxiality in the asymptotic analysis of a 2D Landau-de Gennes model for liquid crystals. ESAIM Control Optim. Calc. Var. 21(1), 101–137 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chandrasekhar, S., Ranganath, G.: The structure and energetics of defects in liquid crystals. Adv. Phys. 35, 507–596 (1986)

    Article  Google Scholar 

  11. Cladis, P., Kleman, M.: Non-singular disclinations of strength \(s = + 1\) in nematics. J. Phys. 33, 591–598 (1972)

    Article  Google Scholar 

  12. Contreras, A., Lamy, X.: Biaxial escape in nematics at low temperature. arXiv preprint arXiv:1405.2055 (2014)

  13. de Figueiredo, D.G., Sirakov, B.: On the Ambrosetti–Prodi problem for non-variational elliptic systems. J. Differ. Equ. 240(2), 357–374 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. de Gennes, P., Prost, J.: The Physics of Liquid Crystals, 2nd edn. Oxford University Press, Oxford (1995)

    Google Scholar 

  15. Di Fratta, G., Robbins, J., Slastikov, V., Zarnescu, A.: Half-integer point defects in the \(q\)-tensor theory of nematic liquid crystals. J. Nonlinear Sci. 26, 121–140 (2015)

  16. Döring, L., Ignat, R., Otto, F.: A reduced model for domain walls in soft ferromagnetic films at the cross-over from symmetric to asymmetric wall types. J. Eur. Math. Soc. (JEMS) 16(7), 1377–1422 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fatkullin, I., Slastikov, V.: Vortices in two-dimensional nematics. Commun. Math. Sci. 7(4), 917–938 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gartland, E.C., Mkaddem, S.: Instability of radial hedgehog configurations in nematic liquid crystals under Landau-de Gennes free-energy models. Phys. Rev. E 59, 563–567 (1999)

    Article  Google Scholar 

  19. Geng, Z., Wang, W., Zhang, P., Zhang, Z.: Stability of half-degree point defect profiles for 2-d nematic liquid crystal. arXiv preprint arXiv:1601.02845 (2016)

  20. Gilbarg, D., Trudinger, N.: Elliptic partial differential equations of second order, 2nd edn. Springer, Berlin (2001)

    MATH  Google Scholar 

  21. Golovaty, D., Montero, A.: On minimizers of a Landau-de Gennes energy functional on planar domains. Arch. Ration. Mech. Anal. 213, 447–490 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Golovaty, D., Montero, J. A., Sternberg, P.: Dimension reduction for the Landau-de Gennes model in planar nematic thin films. arXiv preprint arXiv:1501.07339 (2015)

  23. Hu, Y., Qu, Y., Zhang, P.: On the disclination lines of nematic liquid crystals. arXiv:1408.6191 (2014)

  24. Ignat, R., Nguyen, L., Slastikov, V., Zarnescu, A.: Stability of the vortex defect in the Landau-de Gennes theory for nematic liquid crystals. C. R. Math. Acad. Sci. Paris 351(13–14), 533–537 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ignat, R., Nguyen, L., Slastikov, V., Zarnescu, A.: Uniqueness results for an ODE related to a generalized Ginzburg–Landau model for liquid crystals. SIAM J. Math. Anal. 46(5), 3390–3425 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ignat, R., Nguyen, L., Slastikov, V., Zarnescu, A.: Instability of point defects in a two-dimensional nematic liquid crystal model. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(4), 1131–1152 (2016)

  27. Ignat, R., Nguyen, L., Slastikov, V., Zarnescu, A.: Stability of the melting hedgehog in the Landau-de Gennes theory of nematic liquid crystals. Arch. Ration. Mech. Anal. 215(2), 633–673 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ignat, R., Otto, F.: A compactness result for Landau state in thin-film micromagnetics. Ann. Inst. H. Poincaré Anal. Non Linéaire 28(2), 247–282 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kleman, M.: Points, lines and walls in liquid crystals, magnetic systems and various ordered media. Wiley, New York (1983)

    Google Scholar 

  30. Kleman, M., Lavrentovich, O.: Topological point defects in nematic liquid crystals. Philos. Mag. 86, 4117–4137 (2006)

    Article  Google Scholar 

  31. Kralj, S., Virga, E.G.: Universal fine structure of nematic hedgehogs. J. Phys. A Gen. 34(4), 829–838 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kralj, S., Virga, E.G., Zumer, S.: Biaxial torus around nematic point defects. Phys. Rev. E 60(2), 1858–1866 (1999)

    Article  Google Scholar 

  33. Lamy, X.: Some properties of the nematic radial hedgehog in the Landau-de Gennes theory. J. Math. Anal. Appl. 397(2), 586–594 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Majumdar, A., Zarnescu, A.: Landau-de Gennes theory of nematic liquid crystals: the Oseen-Frank limit and beyond. Arch. Ration. Mech. Anal. 196(1), 227–280 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mironescu, P.: On the stability of radial solutions of the Ginzburg–Landau equation. J. Funct. Anal. 130(2), 334–344 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mottram, N. J., Newton, C. J.: Introduction to q-tensor theory. arXiv preprint arXiv:1409.3542 (2014)

  37. Strauss, W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55(2), 149–162 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  38. Struwe, M.: Variational methods, fourth edn., vol. 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Applications to nonlinear partial differential equations and Hamiltonian systems. Springer-Verlag, Berlin (2008)

Download references

Acknowledgments

The authors gratefully acknowledge the hospitality and partial support of the Centre International de Rencontres Mathématiques, Institut Henri Poincaré, and Centro di Ricerca Matematica Ennio De Giorgi where parts of this work were carried out. R.I. acknowledges partial support by the ANR project ANR-14-CE25-0009-01, V.S. acknowledges partial support by EPSRC Grant EP/K02390X/1, V.S. and A.Z. acknowledge partial support of Leverhulme Research Grant RPG-2014-226. The activity of A.Z. on this work was partially supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project number PN-II-RU-TE-2014-4-0657. Note added in proof After our paper was finished, the preprint [19] was brought to our attention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Ignat.

Additional information

Communicated by F. Helein.

Appendix

Appendix

Lemma 5.1

Assume that \(a^2 \ge 0, b^2, c^2 > 0\). Let

$$\begin{aligned} f(x,y) = -\frac{a^2}{2}(x^2 + y^2) + \frac{c^2}{4}(x^2 + y^2)^2 - \frac{b^2}{3\sqrt{6}}y(y^2 - 3x^2). \end{aligned}$$

Then

$$\begin{aligned} \min _{{\mathbb {R}}^2} f = -\frac{a^2}{3} s_+^2 - \frac{2b^2}{27}\,s_+^3 + \frac{c^2}{6} s_+^4 \end{aligned}$$

which is attained at (and only at) \(\big (0,\frac{2}{\sqrt{6}}s_+\big )\) and \(\big (\pm \frac{1}{\sqrt{2}}s_+,- \frac{1}{\sqrt{6}}s_+\big )\). Furthermore, the Hessian of f at all these critical points is positive definite.

Proof

We write \(x = r\,\sin \varphi \) and \(y = r\cos \varphi \) for some \(r \ge 0\) and \(\varphi \in [0,2\pi )\). Then

$$\begin{aligned} f(x,y) = -\frac{a^2}{2}r^2 + \frac{c^2}{4}r^4 - \frac{b^2}{3\sqrt{6}}\,r^3 \cos 3\varphi \ge -\frac{a^2}{2}r^2 + \frac{c^2}{4}r^4 - \frac{b^2}{3\sqrt{6}}\,r^3 =: {\tilde{f}}(r). \end{aligned}$$

It is easy to check that \({\tilde{f}}\) has three critical points, \(r = 0\) and \(r = \frac{2}{\sqrt{6}}s_\pm \) where the first one is a local maximum point and the other two are local minimum points. The global minimum of \({\tilde{f}}\) is then verified to be achieved at \(r = \frac{2}{\sqrt{6}}s_+\). We have thus shown that

$$\begin{aligned} f(x,y) \ge {\tilde{f}}\left( \frac{2}{\sqrt{6}}s_+\right) = -\frac{a^2}{3} s_+^2 - \frac{2b^2}{27}\,s_+^3 + \frac{c^2}{6} s_+^4 , \end{aligned}$$

and equality is attained if and only if \(r =\frac{2}{\sqrt{6}}s_+\) and \(\varphi \in \{0, \frac{2\pi }{3}, \frac{4\pi }{3}\}\). The first assertion follows.

Now a computation using \(-a^2 - \frac{b^2}{3} s_+ + \frac{2}{3}c^2\,s_+^2 = 0\) leads to

$$\begin{aligned} D^2 f\left( 0,\frac{2}{\sqrt{6}}s_+\right)&= \left[ \begin{array}{cc} b^2\,s_+ &{} 0\\ 0&{} \frac{1}{3}(3a^2 + b^2\,s_+) \end{array}\right] ,\\ D^2 f\left( \pm \frac{1}{\sqrt{2}}s_+,- \frac{1}{\sqrt{6}}s_+\right)&= \left[ \begin{array}{cc} c^2 s_+^2 &{} \pm \frac{1}{\sqrt{3}}(-c^2\,s_+^2+ b^2\,s_+)\\ \pm \frac{1}{\sqrt{3}}(-c^2\,s_+^2+ b^2\,s_+) &{} \frac{1}{3}(c^2\,s_+^2 + 2b^2\,s_+) \end{array}\right] , \end{aligned}$$

from which the last assertion follows. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignat, R., Nguyen, L., Slastikov, V. et al. Stability of point defects of degree \(\pm \frac{1}{2}\) in a two-dimensional nematic liquid crystal model. Calc. Var. 55, 119 (2016). https://doi.org/10.1007/s00526-016-1051-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-016-1051-2

Mathematics Subject Classification

Navigation