Skip to main content
Log in

Monge–Ampère equation on exterior domains

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider the Monge–Ampère equation \(\det (D^2u)=f\) where \(f\) is a positive function in \({\mathbb {R}}^n\) and \(f=1+O(|x|^{-\beta })\) for some \(\beta >2\) at infinity. If the equation is globally defined on \({\mathbb {R}}^n\) we classify the asymptotic behavior of solutions at infinity. If the equation is defined outside a convex bounded set we solve the corresponding exterior Dirichlet problem. Finally we prove for \(n\ge 3\) the existence of global solutions with prescribed asymptotic behavior at infinity. The assumption \(\beta >2\) is sharp for all the results in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleksandrov, A.D.: Dirichlet’s problem for the euqation \(Det \Vert z_{ij}\Vert =\phi \) I, Vestnik Leningrad. Univ. Ser. Mat. Meh. Astr. 13, 5–24 (1958)

    Google Scholar 

  2. Bakelman, I.J.: Generalized solutions of Monge–Ampère equations (Russian). Dokl. Akad. Nauk SSSR (N. S.) 114, 1143–1145 (1957)

    Google Scholar 

  3. Bao, J., Li, H.: On the exterior Dirichlet problem for the Monge–Ampère equation in dimension two. Nonlinear Anal. 75(18), 6448–6455 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Nirenberg, L.: The Weyl and Minkowski problems in differential geometry in the large. Comm. Pure Appl. Math. 6, 337–394 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  5. Caffarelli, L.A.: A localization property of viscosity solutions to the Monge–Ampère equation and their strict convexity. Ann. Math. 13, 129–134 (1990)

    Article  MathSciNet  Google Scholar 

  6. Caffarelli, L.A.: Some regularity properties of solutions of Monge–Ampère equation. Comm. Pure Appl. Math. 44(8–9), 965–969 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. Caffarelli, L.A.: Interior \(W^{2, p}\) estimates for solutions of the Monge–Ampère equation. Ann. Math. 131, 135–150 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Caffarelli, L.A., Cabre, X.: Fully nonlinear elliptic equations. American Mathematical Society Colloquium Publications, vol. 43. American Mathematical Society, Providence (1995)

  9. Caffarelli, L.A., Li, Y.Y.: An extension to a theorem of Jörgens, Calabi, and Pogorelov. Comm. Pure Appl. Math. 56(5), 549–583 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Caffarelli, L.A., Li, Y.Y.: A Liouville theorem for solutions of the Monge–Ampère equation with periodic data. Ann. Inst. H. Poincar Anal. Non Linaire 21(1), 97–120 (2004)

    Google Scholar 

  11. Caffarelli, L.A., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge–Ampère equation. Comm. Pure Appl. Math. 37(3), 369–402 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  12. Calabi, E.: Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens. Mich. Math. J. 5, 105–126 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cheng, S.Y., Yau, S.T.: On the regularity of the Monge–Ampère equation \(\det (\partial ^2u/\partial x_i\partial x_j)=F(x, u)\). Comm. Pure Appl. Math. 30(1), 41–68 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cheng, S.Y., Yau, S.T.: Complete affine hypersurfaces. I. The completeness of affine metrics. Comm. Pure Appl. Math. 39(6), 839–866 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chou, K.S., Wang, X.: Entire solutions of the Monge–Ampère equation. Comm. Pure Appl. Math. 49(5), 529–539 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Delanoë, P.: Partial decay on simple manifolds. Ann. Global Anal. Geom. 10(1), 3–61 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jost, J., Xin, Y.L.: Some aspects of the global geometry of entire space-like submanifolds. Results Math. 40, 233–245 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ferrer, L., Martínez, A., Milán, F.: The space of parabolic affine spheres with fixed compact boundary. Monatsh. Math. 130(1), 19–27 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ferrer, L., Martínez, A., Milán, F.: An extension of a theorem by K. Jörgens and a maximum principle at infinity for parabolic affine spheres. Math. Z. 230(3), 471–486 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gilbarg, D., Serrin, J.: On isolated singularities of solutions of second order elliptic differential equations. J. Anal. Math. 4, 309–340 (1955/56)

    Google Scholar 

  21. Huang, Q.: Sharp regularity results on second derivatives of solutions to the Monge–Ampère equation with VMO type data. Comm. Pure Appl. Math. 62(5), 677–705 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ivochkina, N.M.: Construction of a priori estimates for convex solutions of the Monge–Ampère equation by the integral method (Russian). Ukrain. Mat. Z. 30, 45–53 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ivochkina, N.M.: A priori estimate of \(\Vert u\Vert _{C^{2,\alpha }(\Omega )}\) of convex solutions of the Dirichlet problem for the Monge–Ampère equation. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 96, 69–79 (1980)

    MATH  MathSciNet  Google Scholar 

  24. Ivochkina, N.M.: Classical solvability of the Dirichlet problem for the Monge–Ampère equation (Russian). Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 131, 72–79 (1983)

    Google Scholar 

  25. Jian, H., Wang, X.: Continuity estimates for the Monge–Ampère equation. SIAM J. Math. Anal. 39(2), 608–626 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Jörgens, K.: Über die Lösungen der Differentialgleichung \(rt-s^2=1\). Math. Ann. 127, 130–134 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  27. Krylov, N.V.: Boundedly inhomogeneous elliptic and parabolic equations in a domain (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 47(1), 75–108 (1983)

    MathSciNet  Google Scholar 

  28. Littman, W., Stampacchia, G., Weinberger, H.F.: Regular points for elliptic equations with discontinuous coefficients. Ann. Scuola Norm. Sup. Pisa 17(3), 43–77 (1963)

    MATH  MathSciNet  Google Scholar 

  29. Philippis, G.D., Figalli, A.: \(W^{2,1}\) regularity for solutions of the Monge–Amprère equation. Invent. Math. 192(1), 55–69 (2013)

  30. Pogorelov, A.V.: Regularity of a convex surface with given Gaussian curvature. Mat. Sbornik N.S. 31, 88–103 (1952)

    Google Scholar 

  31. Pogorelov, A.V.: On the improper convex affine hyperspheres. Geometriae Dedicata 1(1), 33–46 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  32. Pogorelov, A.V.: The regularity of the generalized solutions of the equation \(det(\partial ^2u/\partial x_i\partial x_j)=\phi >0\), (Russian). Dokl. Akad. Nauk SSSR 200, 534–537 (1971)

  33. Pogorelov, A.V.: The Minkowski multidimensional problem. Translated from the Russian by Vladimir Oliker. Introduction by Louis Nirenberg. Scripta Series in Mathematics. V. H. Winston & Sons/Halsted Press [John Wiley & Sons], Washington, D.C/New York (1978)

  34. Savin, O.: Global \(W^{2, p}\) estimates for the Monge–Ampère equation. Proc. Am. Math. Soc. 141(10), 3573–3578 (2013)

  35. Savin, O.: Pointwise \(C^{2,\alpha }\) estimates at the boundary for the Monge–Ampre equation. J. Am. Math. Soc. 26(1), 63–99 (2013)

  36. Trudinger, N., Wang, X.: Boundary regularity for the Monge–Ampère and affine maximal surface equations. Ann. Math. (2) 167(3), 993–1028 (2008)

    Google Scholar 

  37. Trudinger, N., Wang, X.: The Monge–Ampère equation and its geometric applications. In: Handbook of geometric analysis. No. 1, pp. 467–524. Adv. Lect. Math. (ALM), vol. 7. International Press, Somerville (2008)

  38. Urbas, J.: Regularity of generalized solutions of Monge–Ampère equations. Math. Z. 197(3), 365–393 (1988)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiguang Bao.

Additional information

Communicated by N. Trudinger.

Bao is supported by NSFC (11071020) and SRFDPHE (20100003110003), Li is supported by NSFC (11071020)(11126038)(11201029) and SRFDPHE (20100003120005).

Appendix: Interior estimate of Caffarelli and Jian–Wang

Appendix: Interior estimate of Caffarelli and Jian–Wang

The following theorem is a combination of the interior estimate of Caffarelli [7] and an improvement by Jian and Wang [25].

Theorem 6.1

(Caffarelli, Jian and Wang) Let \(u\in C^0(\Omega )\) be a convex viscosity solution of

$$\begin{aligned}&det(D^2u)=f, \quad \Omega , \\&u=0\quad \hbox {on }\quad \partial \Omega , \end{aligned}$$

where \(\Omega \) is a convex bounded domain satisfying \(B_1\subset \Omega \subset B_n\). Assume that \(f\) is Dini continuous on \(\Omega \) and

$$\begin{aligned} \frac{1}{c_0}\le f \le c_0, \quad \Omega . \end{aligned}$$

Then \(u\in C^2(B_{1/2})\) and \(\forall x,y\in B_{1/2}\)

$$\begin{aligned} |D^2u(x)-D^2u(y)|\le C \left( d+\int _0^d\frac{\omega _f(r)}{r}+d\int _d^1\frac{\omega _f(r)}{r^2}\right) \end{aligned}$$
(6.1)

where \(d=|x-y|, C>0\) depends only on \(n\) and \(c_0, \omega _f\) is the oscillation function of \(f\) defined by

$$\begin{aligned} \omega _f(r):=\sup \{|f(x)-f(y)|:\quad |x-y|\le r \}. \end{aligned}$$

It follows that (i) If \(f\) is Dini continuous, then \(u\in C^2(B_{1/2})\), and the modulus of convexity of \(D^2u\) can be estimated by (6.1). (ii) If \(f\in C^{\alpha }(\Omega )\) and \(\alpha \in (0,1)\), then

$$\begin{aligned} \Vert D^2u\Vert _{C^{\alpha }(B_{1/2})}\le C \left( 1+\frac{\Vert f\Vert _{C^{\alpha }(\Omega )}}{\alpha (1-\alpha )}\right) . \end{aligned}$$

(iii) If \(f\in C^{0,1}(\Omega )\), then

$$\begin{aligned} |D^2u(x)-D^2u(y)|\le Cd (1+\Vert f\Vert _{C^{0,1}(\Omega )}|\log d| ). \end{aligned}$$

Here we recall that \(f\) is Dini continuous if the oscillation function \(\omega _f\) satisfies \(\int _0^1\omega _f(r)/rdr<\infty \).

Remark 6.1

Note that in Caffarelli’s interior estimate \(u=0\) is assumed on \(\partial \Omega \). Since \(\Omega \) is very close to a ball, by [5, 6] \(u\) is strictly convex in \(\Omega \). But there is no explicit formula that describes how the higher order derivatives of \(u\) depend on \(f\). In Jian-Wang’s theorem, this dependence is given as in (6.1) but instead of assume \(u=0\) on \(\partial \Omega \), they assumed \(u\) is strictly convex and their constant depends on the strict convexity. We feel the way that Theorem 6.1 is stated is more convenience for application. We only used the \((ii)\) and \((iii)\) of Theorem 6.1 in this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, J., Li, H. & Zhang, L. Monge–Ampère equation on exterior domains. Calc. Var. 52, 39–63 (2015). https://doi.org/10.1007/s00526-013-0704-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-013-0704-7

Mathematics Subject Classification (1991)

Navigation