Skip to main content
Log in

Compactness for manifolds and integral currents with bounded diameter and volume

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

By Gromov’s compactness theorem for metric spaces, every uniformly compact sequence of metric spaces admits an isometric embedding into a common compact metric space in which a subsequence converges with respect to the Hausdorff distance. Working in the class of oriented k-dimensional Riemannian manifolds (with boundary) and, more generally, integral currents in metric spaces in the sense of Ambrosio–Kirchheim and replacing the Hausdorff distance with the filling volume or flat distance, we prove an analogous compactness theorem in which however we only assume uniform bounds on volume and diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio L., Kirchheim B.: Currents in metric spaces. Acta Math. 185(1), 1–80 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bridson M., Haefliger A.: Metric Spaces of Non-Positive Curvature, Grundlehren der Mathematischen Wissenschaften 319. Springer-Verlag, Berlin (1999)

    Google Scholar 

  3. Cheeger J., Colding T.H.: On the structure of spaces with Ricci curvature bounded below. I. J. Differ. Geom. 46(3), 406–480 (1997)

    MATH  MathSciNet  Google Scholar 

  4. Cheeger J., Colding T.H.: On the structure of spaces with Ricci curvature bounded below. II. J. Differ. Geom. 54(1), 13–35 (2000)

    MATH  MathSciNet  Google Scholar 

  5. Cheeger J., Colding T.H.: On the structure of spaces with Ricci curvature bounded below. III. J. Differ. Geom. 54(1), 37–74 (2000)

    MATH  MathSciNet  Google Scholar 

  6. Ekeland I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  7. Federer H., Fleming W.H.: Normal and integral currents. Ann. Math. (2) 72, 458–520 (1960)

    Article  MathSciNet  Google Scholar 

  8. Gromov, M.: Groups of polynomial growth and expanding maps. Inst. Hautes Etudes Sci. Publ. Math. No. 53, pp. 53–73 (1981)

  9. Gromov M.: Filling Riemannian manifolds. J. Differ. Geom. 18(1), 1–147 (1983)

    MATH  MathSciNet  Google Scholar 

  10. Gromov, M.: Metric Structures for Riemannian and Non-Riemannian spaces, with Appendices by Katz, M., Pansu, P., Semmes, S. Progress in Mathematics, vol. 152. Birkhäuser Boston, Inc., Boston, MA (1999)

  11. Grove, K., Petersen, P., Wu, J.Y.: Geometric finiteness theorems via controlled topology. Invent. Math. 99(1):205–213 (1990), (Erratum in Invent. Math. 104(1):221–222 (1991))

    Google Scholar 

  12. Lang, U.: Local currents in metric spaces. To appear in J. Geom. Anal.

  13. Petersen P.: A finiteness theorem for metric spaces. J. Differ. Geom. 31(2), 387–395 (1990)

    MATH  Google Scholar 

  14. Sormani, C., Wenger, S.: Weak convergence of currents and cancellation, with an appendix by Schul, R. and the second author, Calc. Var. Partial Differ. Equ. 38(1–2):183–206 (2010)

    Google Scholar 

  15. Wenger S.: Isoperimetric inequalities of Euclidean type in metric spaces. Geom. Funct. Anal. 15(2), 534–554 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Wenger, S.: Filling invariants at infinity and the Euclidean rank of Hadamard spaces, Int. Math. Res. Notices Volume 2006, Article ID 83090, 33 pp (2006)

  17. Wenger S.: Flat convergence for integral currents in metric spaces. Calc. Var. Partial Differ. Equ. 28(2), 139–160 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Wenger S.: Gromov hyperbolic spaces and the sharp isoperimetric constant. Invent. Math. 171(1), 227–255 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wenger, S.: The asymptotic rank of metric spaces, to appear in Commentarii Mathematici Helvetici

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Wenger.

Additional information

Communicated by L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wenger, S. Compactness for manifolds and integral currents with bounded diameter and volume. Calc. Var. 40, 423–448 (2011). https://doi.org/10.1007/s00526-010-0346-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-010-0346-y

Mathematics Subject Classification (2000)

Navigation