Skip to main content
Log in

On surfaces of prescribed weighted mean curvature

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Utilising a weight matrix we study surfaces of prescribed weighted mean curvature which yield a natural generalisation to critical points of anisotropic surface energies. We first derive a differential equation for the normal of immersions with prescribed weighted mean curvature, generalising a result of Clarenz and von der Mosel. Next we study graphs of prescribed weighted mean curvature, for which a quasilinear elliptic equation is proved. Using this equation, we can show height and boundary gradient estimates. Finally, we solve the Dirichlet problem for graphs of prescribed weighted mean curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blaschke, W., Leichtweiß, K.: Elementare Differentialgeometrie. Springer, Berlin (1973)

    MATH  Google Scholar 

  2. Clarenz, U., von der Mosel, H.: Compactness theorems and an isoperimetric inequality for critical points of elliptic parametric functionals. Calc. Var. 12, 85–107 (2001)

    Article  MATH  Google Scholar 

  3. Clarenz, U.: Enclosure theorems for extremals of elliptic parametric functionals. Calc. Var. 15, 313–324 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Clarenz, U., von der Mosel, H.: On surfaces of prescribed F-mean curvature. Pacific J. Math. 213(1), 15–36 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dubrovin, B.A., Fomenko, A.T., Novikov, S.P.: Modern Geometry-Methods and Applications. Graduate Texts in Mathematics. Springer, Berlin (1984)

    Google Scholar 

  6. Fröhlich, S.: Curvature estimates for μ-stable G-minimal surfaces and theorems of Bernstein type. Analysis 22, 109–130 (2002)

    MATH  Google Scholar 

  7. Fröhlich, S.: On two-dimensional immersions that are stable for parametric functionals of constant mean curvature type. Differ. Geometry Appl. 23, 235–256 (2005)

    Article  MATH  Google Scholar 

  8. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)

    MATH  Google Scholar 

  9. Sauvigny, F.: Flächen vorgeschriebener mittlerer Krümmung mit eineindeutiger Projektion auf eine Ebene. Math. Zeit. 180, 41–67 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sauvigny, F.: Curvature existimates for immersions of minimal surface type via uniformization and theorems of Bernstein type. Manuscripta Math. 67, 69–97 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sauvigny, F.: Partial Differential Equations, vol. 1 and 2. Springer Universitext, Berlin (2006)

  12. White, B.: Existence of smooth embedded surfaces of prescribed genus that minimize parametric even elliptic functionals on 3-manifolds. J. Differ. Geometry 33, 413–443 (1991)

    MATH  Google Scholar 

  13. Winklmann, S.: Existence and uniqueness of F-minimal surfaces. Ann. Global Anal. Geom. 24(3), 269–277 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Winklmann, S.: Integral curvature estimates for F-stable hypersurfaces. Calc. Var. 23, 391–414 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Winklmann, S.: Estimates for stable hypersurfaces of prescribed F-mean curvature. Manuscripta Math. 118, 485–499 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Winklmann, S.: A note on the stability of the Wulff shape. Arch. Math. 87, 272–279 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Bergner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergner, M., Dittrich, J. On surfaces of prescribed weighted mean curvature. Calc. Var. 33, 169–185 (2008). https://doi.org/10.1007/s00526-008-0161-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-008-0161-x

Mathematics Subject Classification (2000)

Navigation