Skip to main content
Log in

Sharp asymptotics and compactness for local low energy solutions of critical elliptic systems in potential form

  • Original Article
  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Let (M, g) be a smooth compact Riemannian n-manifold, n ≥ 3. Let also p ≥ 1 be an integer, and \(M_p^s(\mathbb {R})\) be the vector space of symmetrical p × p real matrix. We consider critical elliptic systems of equations which we write in condensed form as

$$\Delta_g^p\mathcal {U} + A(x)\mathcal {U} = \mathcal {U}^{2*-1},$$

where \(A: M \to M_p^s(\mathbb {R})\) , \(\mathcal {U}: M \to \mathbb {R}^p\) is a p-map, \(\Delta_g^p\) is the Laplace–Beltrami operator acting on p-maps, and 2* is the critical Sobolev exponent. We fully answer the question of getting sharp asymptotics for local minimal type solutions of such systems. As an application, we prove compactness of minimal type solutions and prove that the result is sharp by constructing explicit examples where blow-up occurs when the compactness assumptions are not fulfilled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amster P., De Nápoli P. and Mariani M.C. (2002). Existence of solutions for elliptic systems with critical Sobolev exponent. Electron. J. Differ. Equ. 49: 1–13

    Google Scholar 

  2. Angenent S.B. and Van der Vorst R. (1999). A superquadratic indefinite elliptic system and its Morse–Conley–Floer homology. Math. Z. 231: 203–248

    Article  MATH  MathSciNet  Google Scholar 

  3. Angenent S.B. and Van der Vorst R. (2000). A priori bounds and renormalized Morse indices of solutions of an elliptic system. Ann. Inst. H. Poincaré. Anal. Nonlinéaire 17: 277–306

    Article  MATH  MathSciNet  Google Scholar 

  4. Aubin T. (1976). Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. 55: 269–296

    MathSciNet  MATH  Google Scholar 

  5. Aubin, T.: Nonlinear analysis on manifolds. Monge-Ampère equations. Grundlehren der Mathematischen Wissenschaften, vol. 252. Springer, New York (1982)

  6. Brendle, S.: Blow-up phenomena for the Yamabe PDE in high dimensions. Preprint (2006)

  7. Brézis, H.: Problèmes de convergence dans certaines EDP non linéaires et applications géométriques. Séminaire Goulaouic-Meyer-Schartz. Ecole Polytechnique (1983–1984)

  8. Brézis H. and Coron (1985). Convergence of solutions of H-systems or how to blow bubbles. Arch. Ration. Mech. Anal. 89: 21–56

    Article  MATH  Google Scholar 

  9. Brézis, H., Peletier, L. : Asymptotics for elliptic equations involving critical Sobolev exponents. In: Colombini, F., Marino, A., Modica, L., Spagnolo, S Partial Differential Equations and the Calculus of Variations, pp. . Birkhaüser, Basel (1989)

  10. Caffarelli L.A., Gidas B. and Spruck J. (1989). Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Commun. Pure Appl. Math. 42: 271–297

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen C.C. and Lin C.S. (1997). Estimates of the scalar curvature equation via the method of moving planes. Commun. Pure Appl. Math. 50: 971–1017

    Article  MathSciNet  Google Scholar 

  12. Chen C.C. and Lin C.S. (1998). Estimates of the scalar curvature equation via the method of moving planes II. J. Differ. Geom. 49: 115–178

    Article  MATH  MathSciNet  Google Scholar 

  13. Clément P., Manásevich R. and Mitidieri E. (1993). Positive solutions for a quasilinear system via blow up. Commun. Partial Differ. Equ. 18: 2071–2106

    Article  MATH  Google Scholar 

  14. De Figueiredo, D.G.: Semilinear elliptic systems. Nonlinear functional analysis and applications to differential equations. Trieste 1997, pp. 122–152. World Scientific Publishing, River Edge (1998)

  15. De Figueiredo D.G. and Ding Y.H. (2003). Strongly indefinite functionals and multiple solutions of elliptic systems. Trans. Am. Math. Soc. 355: 2973–2989

    Article  MATH  MathSciNet  Google Scholar 

  16. De Figueiredo D.G. and Felmer P.L. (1994). On superquadratic elliptic systems. Trans. Am. Math. Soc. 343: 97–116

    Article  MathSciNet  Google Scholar 

  17. De Figueiredo D.G. and Sirakov B. (2005). Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems. Math. Ann. 333: 231–260

    Article  MATH  MathSciNet  Google Scholar 

  18. Druet O. (2003). From one bubble to several bubbles: the low-dimensional case. J. Differ. Geom. 63: 399–473

    MATH  MathSciNet  Google Scholar 

  19. Druet O. (2004). Compactness for Yamabe metrics in low dimensions. Int. Math. Res. Not. 23: 1143–1191

    Article  MathSciNet  Google Scholar 

  20. Druet, O., Hebey, E., Robert, F.: Blow-up theory for elliptic PDEs in Riemannian geometry. Mathematical Notes, vol. 45. Princeton University Press, Princeton (2004)

  21. El Hamidi A. (2004). Existence results to ellipttic systems with nonstandard growth conditions. J. Math. Anal. Appl. 300: 30–42

    Article  MATH  MathSciNet  Google Scholar 

  22. Giaquinta, M., Martinazzi, L.: An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs. Edizioni della Normale, Scuola Normale Superiore di Pisa (2005)

  23. Gilbarg, G., Trudinger N.S.: Elliptic partial differential equations of second order, 2nd edn. Grundlehren der Mathematischen Wissenschaften, vol. 224. Springer, Berlin (1983)

  24. Giraud G. (1929). Sur le problème de Dirichlet généralisé. Ann. Soc. Ecole. Norm. Sup. 46: 131–245

    MathSciNet  Google Scholar 

  25. Han Z.C. (1991). Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent. Ann. Inst. H. Poincaré Anal. Nonlinéaire 8: 159–174

    MATH  Google Scholar 

  26. Hebey E. (1996). Asymptotics for some quasilinear elliptic equations. Differ. Integral Equ. 9: 71–88

    MATH  MathSciNet  Google Scholar 

  27. Hebey E. (2000). Asymptotic behavior of positive solutions of quasilinear elliptic equations with critical Sobolev growth. Differ. Integral Equ. 13: 1073–1080

    MATH  MathSciNet  Google Scholar 

  28. Hebey E. (2006). Critical elliptic systems in potential form. Adv. Differ. Equ. 11: 511–600

    MathSciNet  MATH  Google Scholar 

  29. Hebey E. (2006). Sharp Sobolev inequalities for vector valued maps. Math. Z. 253: 681–708

    Article  MATH  MathSciNet  Google Scholar 

  30. Hebey, E.: Diagonal compactness for critical elliptic systems in potential form. Commun. PDE (in press)

  31. Hebey E. and Vaugon M. (1995). The best constant problem in the Sobolev embedding theorem for complete Riemannian manifolds. Duke Math. J. 79: 235–279

    Article  MATH  MathSciNet  Google Scholar 

  32. Hebey E. and Vaugon M. (1996). Meilleures constantes dans le théorème d’inclusion de Sobolev. Ann. Inst. H. Poincaré. Anal. Nonlinéaire 13: 57–93

    MATH  MathSciNet  Google Scholar 

  33. Hulshof J., Mitidieri E. and Vandervorst R. (1998). Strongly indefinite systems with critical Sobolev exponents. Trans. Am. Math. Soc. 350: 2349–2365

    Article  MATH  MathSciNet  Google Scholar 

  34. Jost, J., Lin, C.S., Wang, G.: Analytic aspects of the Toda system: II. Bubbling behavior and existence of solutions. Preprint (2005)

  35. Jost J. and Wang G. (2001). Analytic aspects of the Toda system: I. A Moser–Trudinger inequality. Commun. Pure Appl. Math. 54: 1289–1319

    Article  MATH  MathSciNet  Google Scholar 

  36. Li Y.Y. (1995). Prescribing scalar curvature on S n and related problems Part I. J. Differ. Equ. 120: 319–410

    Article  MATH  Google Scholar 

  37. Li Y.Y. (1996). Prescribing scalar curvature on S n and related problems, Part II: existence and compactness. Commun. Pure Appl. Math. 49: 541–597

    Article  MATH  Google Scholar 

  38. Li Y.Y. and Zhang L. (2004). A Harnack type inequality for the Yamabe equations in low dimensions. Calc. Var. Partial Differ. Equ. 20: 133–151

    Article  MATH  Google Scholar 

  39. Li Y.Y. and Zhang L. (2005). Compactness of solutions to the Yamabe problem II. Calc. Var. PDE 24: 185–237

    Article  MATH  Google Scholar 

  40. Li Y.Y. and Zhu M. (1999). Yamabe type equations on three dimensional Riemannian manifolds. Commun. Contemp. Math. 1: 1–50

    Article  MathSciNet  Google Scholar 

  41. Lions, P.-L.: The concentration-compactness principle in the calculus of variations, the limit case I, II. Rev. Mat. Iberoam. no. 1, 145–201; no. 2, 45–121 (1985)

  42. Mancini, G., Mitidieri, E.: Positive solutions of some coercive-anticoercive elliptic systems. Ann. Faculté Sci. Toulouse 8, 257–292 (1986/87)

    Google Scholar 

  43. Marques F.C. (2005). A priori estimates for the Yamabe problem in the non-locally conformally flat case. J. Differ. Geom. 71: 315–346

    MATH  MathSciNet  Google Scholar 

  44. Mitidieri E. and Sweers G. (1995). Weakly coupled elliptic systems and positivity. Math. Nachr. 173: 259–286

    Article  MATH  MathSciNet  Google Scholar 

  45. Montenegro M.S. (1997). Criticalidade, superlinearidade e sublinearidade para sstemas elíptico semilineares. Tese de Doutoramento, Unicamp

    Google Scholar 

  46. Obata, M.: The conjectures on conformal transformations of Riemannian manifolds. J. Differ. Geom. 6, 247–258 (1971/1972)

    Google Scholar 

  47. Pompino, A.: Coupled nonlinear Schrodinger systems with potentials. Preprint (2005)

  48. Qing J. (1988). A priori estimates for positive solutions of semi-linear elliptic systems. J. Partial Differ. Equ. 1: 61–70

    MATH  MathSciNet  Google Scholar 

  49. Robert F. (2001). Asymptotic behaviour of a nonlinear elliptic equation with critical Sobolev exponent: the radial case. Adv. Differ. Equ. 6: 821–846

    MATH  Google Scholar 

  50. Robert F. (2002). Asymptotic behaviour of a nonlinear elliptic equation with critical Sobolev exponent: the radial case II. NoDEA Nonlinear Differ. Equ. Appl. 9: 361–384

    Article  MATH  Google Scholar 

  51. Robert, F.: Green’s functions estimates for elliptic type operators. Preprint (2006)

  52. Sacks P. and Uhlenbeck K. (1981). On the existence of minimal immersions of 2-spheres. Ann. Math. 113: 1–24

    Article  MathSciNet  Google Scholar 

  53. Schoen R.M. (1984). Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differ. Geom. 20: 479–495

    MATH  MathSciNet  Google Scholar 

  54. Schoen, R.M.: Lecture notes from courses at Stanford, written by D. Pollack. Preprint (1988)

  55. Schoen, R.M.: Variational theory for the total scalar curvature functional for Riemannian metrics and related topics. In: Topics in Calculus of Variations. (Montecatini Terme, 1987). Lecture Notes in Mathematics, vol. 1365, pp. 120–154. Springer, Berlin (1989)

  56. Schoen, R.M.: On the number of constant scalar curvature metrics in a conformal class. In: Differential Geometry: A Symposium in Honor of Manfredo do Carmo. Proceedings of International Conference (Rio de Janeiro, 1988). Pitman Monogr. Surveys Pure Appl. Math., vol. 52, pp. 311–320. Longman Sci. Tech., Harlow (1991)

  57. Schoen, R.M.: A report on some recent progress on nonlinear problems in geometry. Surveys in Differential Geometry (Cambridge, 1990), Suppl. J. Differ. Geom., vol. 1, pp. 201–241. Lehigh University, Pennsylvania (1991)

  58. Schoen R.M. and Zhang D. (1996). Prescribed scalar curvature on the n-sphere. Calc. Var. Partial Differ. Equ. 4: 1–25

    Article  MATH  MathSciNet  Google Scholar 

  59. Struwe M. (1984). A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math. Z. 187: 511–517

    Article  MATH  MathSciNet  Google Scholar 

  60. Sweers G. (1992). Strong positivity in \(C(\overline{\Omega})\) for elliptic systems Math. Z. 209: 251–271

    Article  MATH  MathSciNet  Google Scholar 

  61. Trudinger N.S. (1968). Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Scuola Norm. Sup. Pisa 22: 265–274

    MATH  MathSciNet  Google Scholar 

  62. Wente H.C. (1980). Large solutions to the volume constrained Plateau problem. Arch. Ration. Mech. Anal. 75: 59–77

    Article  MATH  MathSciNet  Google Scholar 

  63. Yamabe H. (1960). On a deformation of Riemannian structures on compact manifolds. Osaka Math. J. 12: 21–37

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Hebey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Druet, O., Hebey, E. Sharp asymptotics and compactness for local low energy solutions of critical elliptic systems in potential form. Calc. Var. 31, 205–230 (2008). https://doi.org/10.1007/s00526-007-0111-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-007-0111-z

Mathematics Subject Classification (2000)

Navigation