Skip to main content
Log in

On Solutions for Strongly Coupled Critical Elliptic Systems on Compact Riemannian Manifolds

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this paper, by using variational methods we investigate the existence of solutions for the following system of elliptic equations

$$\begin{aligned} \left\{ \begin{array}{lll} -\Delta _{g}u + a(x)u + b(x)v&{}=&{} \dfrac{\alpha }{2^{*}}f(x)u|u|^{\alpha - 2} |v|^{\beta } \ \ \text{ in } \ \ M,\\ -\Delta _{g}v+ b(x)u + c(x)v &{}=&{} \dfrac{\beta }{2^{*}}f(x)v|v|^{\beta - 2} |u|^{\alpha } \ \ \text{ in } \ \ M, \end{array}\right. \end{aligned}$$

where (Mg) is a smooth closed Riemannian manifold of dimension \(n\ge 3, \Delta _{g}\) is the Laplace–Beltrami operator, ab and c are functions Hölder continuous in Mf is a smooth function and \(\alpha>1, \beta >1\) are two real numbers such that \(\alpha + \beta = 2^*,\) where \( 2^{*}= 2n/(n-2)\) denotes the critical Sobolev exponent. We get these results by assuming sufficient conditions on the function \(h= \frac{\alpha }{2^{*}} a + \frac{2\sqrt{\alpha \beta }}{2^{*}}b + \frac{\beta }{2^{*}} c\) related to the linear geometric potential \(\frac{n-2}{4(n-1)}R_{g}\), where \(R_{g}\) is the scalar curvature associated to the metric g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility

All data generated or analysed during this study are included in this published article.

References

  1. Ablowitz, M.J., Prinari, B., Trubatch, A.D.: Discrete and Continuous Nonlinear Schrödinger Systems. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  2. Alves, C.O., de Morais Filho, D.C., Souto, M.A.S.: On systems of equations involving subcritical or critical Sobolev exponents. Nonlinear Anal. 42, 771–787 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aubin, T.: Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. 55, 269–296 (1976)

    MATH  MathSciNet  Google Scholar 

  4. Aubin, T.: Some Nonlinear Problems in Riemannian Geometry. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  5. Aubin, T., Hebey, E.: Courbure scalaire prescrite. Bull. Sci. Math. 115, 125–132 (1991)

    MATH  MathSciNet  Google Scholar 

  6. Chabrowski, J., Yang, J.: On the Neumann problem for an elliptic system of equation involving the Sobolev expoent. Colloq. Math. 90, 1–35 (2001)

    Article  MathSciNet  Google Scholar 

  7. Deng, S., Yang, J.: Critical Neumann problem for nonlinear elliptic systems in exterior domains. Electron. J. Differ. Equ. 153, 1–13 (2008)

    MATH  MathSciNet  Google Scholar 

  8. Druet, O.: Generalized scalar curvature type equations on compact Riemannian manifolds. Proc. R. Soc. Edinb. Sect. A 130, 767–788 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Druet, O.: Optimal Sobolev inequalities and extremal functions the three-dimensional case. Indiana Univ. Math. J. 51, 69–88 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Druet, O., Hebey, E.: Sharp asymptotics and compactness for local low energy solutions of critical elliptic systems in potential form. Calc. Var. Partial Differ. Equ. 31, 205–230 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Druet, O., Hebey, E., Vétois, J.: Bounded stability for strongly coupled critical elliptic systems below the geometric threshold of the conformal Laplacian. J. Funct. Anal. 258, 999–1059 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dou, J., Qu, C.: Classification of positive solutions for an elliptic system with a higher-order fractional Laplacian. Pac. J. Math. 261, 311–334 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Escobar, J.F., Schoen, R.M.: Conformal metrics with prescribed scalar curvature. Invent. Math. 86, 243–254 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)

  15. Hebey, E.: Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities. Courant Institute of Mathematical Sciences, New York (2000)

    MATH  Google Scholar 

  16. Hebey, E., Vaugon, M.: Courbure scalaire prescrite pour des variétés non conformément difféomorphes à la sphŕe. C.R. Acad. Sci. 316, 281 (1993)

  17. Hebey, E., Vaugon, M.: Le problème de Yamabe équivariant. Bull. Sci. Math. 117, 241–286 (1993)

    MATH  MathSciNet  Google Scholar 

  18. Hebey, E.: Critical elliptic systems in potential form. Adv. Differ. Equ. 11, 511–600 (2006)

    MATH  MathSciNet  Google Scholar 

  19. Hebey, E., Vaugon, M.: Meilleures constantes dans le théorème d’inclusion de Sobolev. Ann. Inst. H. Poincaré. Anal. Non Linéaire 13, 57–93 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hebey, E., Vétois, J.: Multiple solutions for critical elliptic systems in potential form. Commun. Pure. Appl. Anal. 7, 715–741 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ishiwata, M.: Multiple solutions for semilinear elliptic systems involving critical Sobolev exponent. Differ. Integr. Equ. 20, 1237–1252 (2007)

    MATH  MathSciNet  Google Scholar 

  22. Kavian, O.: Introduction à la Thèorie des Points Critiques: et Applications aux Problèmes Elliptiques. Springer, Berlin (1993)

    MATH  Google Scholar 

  23. Lee, J.M., Parker, T.H.: The Yamabe problem. Bull. Am. Math. Soc. New Ser. 17, 37–91 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  24. Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differ. Geom. 20, 479–495 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  25. Schoen, R., Yau, S.-T.: Lectures on Differential Geometry. International Press, Cambridge (2010)

    MATH  Google Scholar 

  26. Trudinger, N.: Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. An. Scuola Norm. Sup. Pisa 22, 265–274 (1968)

    MATH  MathSciNet  Google Scholar 

  27. Vétois, J.: Multiple solutions for nonlinear elliptic equations on compact Riemannian manifolds. Int. J. Math. 9, 1071–1111 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Yamabe, H.: On a deformation of Riemannian structures on compact manifolds. Osaka J. Math. 12, 21–37 (1960)

    MATH  MathSciNet  Google Scholar 

Download references

Funding

This work were supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Grant 309998/2020-4, and by Paraíba State Research Foundation (FAPESQ), Grant 3034/2021.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to this work for writing, review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Manassés de Souza.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira Sousa, N., de Souza, M. On Solutions for Strongly Coupled Critical Elliptic Systems on Compact Riemannian Manifolds. Results Math 78, 91 (2023). https://doi.org/10.1007/s00025-023-01866-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-023-01866-x

Keywords

Mathematics Subject Classification

Navigation