Skip to main content

Advertisement

Log in

Deep learning-based approaches for robust classification of cervical cancer

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Cervical cancer is the fourth most common cancer worldwide, and early diagnosis is crucial for successful treatment, as with all types of cancer. The pap-smear test is considered the gold standard for diagnosing cervical cancer. However, the success of diagnosis depends on the expertise and effort of the physician, as with all cancer types. Computer-aided diagnosis systems aim to improve the speed and accuracy of cancer diagnosis by constantly improving medical image analysis and diagnosis. One of the main challenges in classifying cervical cancer with deep learning-based methods is the availability and quality of data, as well as the variability in size, shape, and appearance of cervical cancer images. This study presents effective techniques for overcoming these challenges and developing a more efficient diagnostic system. Specifically, the study applies the latest and most powerful deep learning techniques in two categories: convolutional neural network (CNN) approaches and vision transformer (ViT) approaches. The study also utilizes data augmentation techniques to increase data diversity and ensemble learning techniques to improve the accuracy of model outputs. This study presents a detailed comparison and the most extensive study in the literature by applying 40 CNN-based models and more than 20 ViT-based models on SIPaKMeD pap-smear dataset. The experimental results show that the latest ViT-based models perform better, and the existing CNN models perform similarly to the ViT models. By utilizing data augmentation and ensemble learning techniques in ViT-based models, the research exceeds previous studies and attains a level of success that has potential to be implemented in clinical settings. This progress is expected to bring down the mortality rate by enabling the early and precise identification of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The SIPaKMeD data that support the findings of this study are available in [repository name: “https://www.kaggle.com/datasets/prahladmehandiratta/cervical-cancer-largest-dataset-sipakmed”] with the identifier(s) [data DOI(s): “http://doi.org/10.1109/ICIP.2018.8451588”] [10].

References

  1. Spagnoletti BRM, Bennett LR, Keenan C et al (2022) What factors shape quality of life for women affected by gynaecological cancer in South, South East and East Asian countries? a critical review. Reprod Health 19:1–19. https://doi.org/10.1186/S12978-022-01369-Y/FIGURES/2

    Article  Google Scholar 

  2. Kessler TA (2017) Cervical cancer: prevention and early detection. Semin Oncol Nurs 33:172–183

    Article  Google Scholar 

  3. Goodman A (2000) Abnormal genital tract bleeding. Clin Cornerstone 3:25–35. https://doi.org/10.1016/S1098-3597(00)90019-X

    Article  Google Scholar 

  4. Cohen PA, Jhingran A, Oaknin A, Denny L (2019) Cervical cancer. Lancet 393:169–182

    Article  Google Scholar 

  5. Peirson L, Fitzpatrick-Lewis D, Ciliska D, Warren R (2013) Screening for cervical cancer: a systematic review and meta-analysis. Syst Rev. https://doi.org/10.1186/2046-4053-2-35

    Article  Google Scholar 

  6. Pacal I, Karaboga D, Basturk A et al (2020) A comprehensive review of deep learning in colon cancer. Comput Biol Med. https://doi.org/10.1016/J.COMPBIOMED.2020.104003

    Article  Google Scholar 

  7. Karaman A, Pacal I, Basturk A et al (2023) Robust real-time polyp detection system design based on YOLO algorithms by optimizing activation functions and hyper-parameters with artificial bee colony (ABC). Expert Syst Appl. https://doi.org/10.1016/j.eswa.2023.119741

    Article  Google Scholar 

  8. Karaman A, Karaboga D, Pacal I et al (2022) Hyper-parameter optimization of deep learning architectures using artificial bee colony (ABC) algorithm for high performance real-time automatic colorectal cancer (CRC) polyp detection. Appl Intell. https://doi.org/10.1007/s10489-022-04299-1

    Article  Google Scholar 

  9. Pacal I (2022) Deep learning approaches for classification of breast cancer in ultrasound (US) images. J Inst Sci Technol. https://doi.org/10.21597/jist.1183679

    Article  Google Scholar 

  10. Miotto R, Wang F, Wang S et al (2017) Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform 19:1236–1246. https://doi.org/10.1093/bib/bbx044

    Article  Google Scholar 

  11. Kilicarslan S, Celik M, Sahin afak, (2021) Hybrid models based on genetic algorithm and deep learning algorithms for nutritional Anemia disease classification. Biomed Signal Process Control 63:1746–8094. https://doi.org/10.1016/j.bspc.2020.102231

    Article  Google Scholar 

  12. Zhu Z, He X, Qi G et al (2023) Brain tumor segmentation based on the fusion of deep semantics and edge information in multimodal MRI. Inf Fusion 91:376–387. https://doi.org/10.1016/J.INFFUS.2022.10.022

    Article  Google Scholar 

  13. Pacal I, Karaboga D (2021) A robust real-time deep learning based automatic polyp detection system. Comput Biol Med. https://doi.org/10.1016/J.COMPBIOMED.2021.104519

    Article  Google Scholar 

  14. Zeng W, Li H, Hu G, Liang D (2022) Lightweight dense-scale network (LDSNet) for corn leaf disease identification. Comput Electron Agric. https://doi.org/10.1016/j.compag.2022.106943

    Article  Google Scholar 

  15. Baygin M, Ozkaya SG, Ozdemir MA, Kazaz I (2017) A new approach based on image processing for measuring compressive strength of structures. Int J Intell Syst Appl Eng Spec Issue. https://doi.org/10.18201/ijisae.2018SpecialIssue31419

    Article  Google Scholar 

  16. Chandra R, Divyanshu J, Vaibhav S et al (2022) An efficient deep neural network based abnormality detection and multi - class breast tumor classification. Multimed Tools Appl. https://doi.org/10.1007/s11042-021-11240-0

    Article  Google Scholar 

  17. Pacal I, Karaman A, Karaboga D et al (2022) An efficient real-time colonic polyp detection with YOLO algorithms trained by using negative samples and large datasets. Comput Biol Med. https://doi.org/10.1016/J.COMPBIOMED.2021.105031

    Article  Google Scholar 

  18. Souaidi M, El AM (2022) A new automated polyp detection network MP-FSSD in WCE and colonoscopy images based fusion single shot multibox detector and transfer learning. IEEE Access 10:47124–47140. https://doi.org/10.1109/ACCESS.2022.3171238

    Article  Google Scholar 

  19. Adem K, Kiliçarslan S, Cömert O (2019) Classification and diagnosis of cervical cancer with stacked autoencoder and softmax classification. Expert Syst Appl 115:557–564. https://doi.org/10.1016/J.ESWA.2018.08.050

    Article  Google Scholar 

  20. Yaman O, Tuncer T (2022) Exemplar pyramid deep feature extraction based cervical cancer image classification model using pap-smear images. Biomed Signal Process Control 73:103428. https://doi.org/10.1016/J.BSPC.2021.103428

    Article  Google Scholar 

  21. Albayrak A, Unlu A, Calik N et al (2017) Segmentation of precursor lesions in cervical cancer using convolutional neural networks Rahim Aǧzi (Serviks) Kanserinde Öncü Lezyonlarin Evrişimsel Sinir Aǧlariyla Bölütlenmesi. In: 2017 25th signal processing and communications applications conference, SIU 2017. https://doi.org/10.1109/SIU.2017.7960459

  22. Plissiti ME, Dimitrakopoulos P, Sfikas G et al (2018) Sipakmed: a new dataset for feature and image based classification of normal and pathological cervical Cells in pap smear images. In: Proceedings - international conference on image processing, ICIP. IEEE Computer Society, pp 3144–3148

  23. Manna A, Kundu R, Kaplun D et al (2021) A fuzzy rank-based ensemble of CNN models for classification of cervical cytology. Sci Rep 11:1–18. https://doi.org/10.1038/s41598-021-93783-8

    Article  Google Scholar 

  24. Chen H, Liu J, Wen QM et al (2021) CytoBrain: cervical cancer screening system based on deep learning technology. J Comput Sci Technol 36:347–360. https://doi.org/10.1007/s11390-021-0849-3

    Article  Google Scholar 

  25. Tripathi A, Arora A, Bhan A (2021) Classification of cervical cancer using deep learning algorithm. In: Proceedings - 5th international conference on intelligent computing and control systems, ICICCS 2021. Institute of Electrical and Electronics Engineers Inc., pp 1210–1218

  26. Haryanto T, Sitanggang IS, Agmalaro MA, Rulaningtyas R (2020) The utilization of padding scheme on convolutional neural network for cervical cell images classification. In: CENIM 2020 - proceeding: international conference on computer engineering, network, and intelligent multimedia 2020. Institute of Electrical and Electronics Engineers Inc., pp 34–38

  27. Akyol FB, Altun O (2020) Detection of cervix cancer from pap-smear images. Sakarya Univ J Comput Inf Sci 3:99–111. https://doi.org/10.35377/SAUCIS.03.02.722670

    Article  Google Scholar 

  28. Chen W, Shen W, Gao L, Li X (2022) hybrid loss-constrained lightweight convolutional neural networks for cervical cell classification. Sensors (Basel). https://doi.org/10.3390/S22093272

    Article  Google Scholar 

  29. Huang P, Tan X, Chen C et al (2021) AF-SENet: classification of cancer in cervical tissue pathological images based on fusing deep convolution features. Sensors (Basel) 21:1–20. https://doi.org/10.3390/S21010122

    Article  Google Scholar 

  30. Basak H, Kundu R, Chakraborty S, Das N (2021) Cervical cytology classification using PCA and GWO enhanced deep features selection. SN Comput Sci. https://doi.org/10.1007/s42979-021-00741-2

    Article  Google Scholar 

  31. Karri M, Annavarapu CSR, Mallik S et al (2022) Multi-class nucleus detection and classification using deep convolutional neural network with enhanced high dimensional dissimilarity translation model on cervical cells. Biocybern Biomed Eng 42:797–814. https://doi.org/10.1016/J.BBE.2022.06.003

    Article  Google Scholar 

  32. Hemalatha K, Vetriselvi V (2022) Deep Learning based classification of cervical cancer using transfer learning. In: Proceedings of the 2022 international conference on electronic systems and intelligent computing, ICESIC 2022. Institute of Electrical and Electronics Engineers Inc., pp 134–139

  33. Mousser W, Ouadfel S, Taleb-Ahmed A, Kitouni I (2022) IDT: an incremental deep tree framework for biological image classification. Artif Intell Med. https://doi.org/10.1016/J.ARTMED.2022.102392

    Article  Google Scholar 

  34. Maurya R, Nath Pandey N, Kishore Dutta M (2023) VisionCervix: papanicolaou cervical smears classification using novel CNN-Vision ensemble approach. Biomed Signal Process Control 79:104156. https://doi.org/10.1016/J.BSPC.2022.104156

    Article  Google Scholar 

  35. Karapinar Şentürk Z, Uzun S (2022) An improved deep learning based cervical cancer detection using a median filter based preprocessing. Eur J Sci Technol. https://doi.org/10.31590/ejosat.1045538

    Article  Google Scholar 

  36. Fang M, Lei X, Liao B, Wu FX (2022) A deep neural network for cervical cell classification based on cytology images. IEEE Access 10:130968–130980. https://doi.org/10.1109/ACCESS.2022.3230280

    Article  Google Scholar 

  37. Xu L, Cai F, Fu Y, Liu Q (2023) Cervical cell classification with deep-learning algorithms. Med Biol Eng Comput 61:821–833. https://doi.org/10.1007/s11517-022-02745-3

    Article  Google Scholar 

  38. Chen W, Gao L, Li X, Shen W (2022) Lightweight convolutional neural network with knowledge distillation for cervical cells classification. Biomed Signal Process Control. https://doi.org/10.1016/j.bspc.2021.103177

    Article  Google Scholar 

  39. Liu W, Li C, Xu N et al (2022) CVM-Cervix: a hybrid cervical Pap-smear image classification framework using CNN, visual transformer and multilayer perceptron. Pattern Recognit. https://doi.org/10.1016/j.patcog.2022.108829

    Article  Google Scholar 

  40. Adem K, Kiliçarslan S (2021) COVID-19 diagnosis prediction in emergency care patients using the convolutional neural network. Afyon Kocatepe Univ J Sci Eng 21:300–309. https://doi.org/10.35414/akufemubid.788898

    Article  Google Scholar 

  41. Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  42. Esteva A, Robicquet A, Ramsundar B et al (2019) A guide to deep learning in healthcare. Nat Med 25:24–29. https://doi.org/10.1038/s41591-018-0316-z

    Article  Google Scholar 

  43. Pacal I, Karaboga D (2021) A robust real-time deep learning based automatic polyp detection system. Comput Biol Med 134:104519

    Article  Google Scholar 

  44. Dong S, Wang P, Abbas K (2021) A survey on deep learning and its applications. Comput Sci Rev. https://doi.org/10.1016/J.COSREV.2021.100379

    Article  MathSciNet  MATH  Google Scholar 

  45. Pacal I, Karaman A, Karaboga D et al (2022) An efficient real-time colonic polyp detection with YOLO algorithms trained by using negative samples and large datasets. Comput Biol Med 141:105031. https://doi.org/10.1016/j.compbiomed.2021.105031

    Article  Google Scholar 

  46. Guo Y, Liu Y, Oerlemans A et al (2016) Deep learning for visual understanding: a review. Neurocomputing 187:27–48. https://doi.org/10.1016/j.neucom.2015.09.116

    Article  Google Scholar 

  47. Shrestha A, Mahmood A (2019) Review of deep learning algorithms and architectures. IEEE Access 7:53040–53065. https://doi.org/10.1109/ACCESS.2019.2912200

    Article  Google Scholar 

  48. Pacal I, Karaboga D, Basturk A et al (2020) A comprehensive review of deep learning in colon cancer. Comput Biol Med 126:104003

    Article  Google Scholar 

  49. Agarap AF (2018) Deep learning using rectified linear units (relu). arXiv Prepr arXiv: 180308375

  50. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: 3rd international conference on learning representations, ICLR 2015 - conference track proceedings. pp 1–14

  51. Dosovitskiy A, Beyer L, Kolesnikov A et al (2020) An image is worth 16x16 words: Transformers for image recognition at scale. arXiv Prepr arXiv:201011929

  52. Ganaie MA, Hu M, Malik AK et al (2022) Ensemble deep learning: a review. Eng Appl Artif Intell 115:105151

    Article  Google Scholar 

  53. Sagi O, Rokach L (2018) Ensemble learning: a survey. Wiley Interdiscip Rev Data Min Knowl Discov 8:e1249

    Article  Google Scholar 

  54. Ganaie MA, Hu M, Malik AK et al (2022) Ensemble deep learning: a review. Eng Appl Artif Intell 115:105151

    Article  Google Scholar 

  55. Ganaie MA, Hu M, Malik AK et al (2022) Ensemble deep learning: a review. Eng Appl Artif Intell. https://doi.org/10.1016/J.ENGAPPAI.2022.105151

    Article  Google Scholar 

  56. Dong X, Yu Z, Cao W et al (2020) A survey on ensemble learning. Front Comput Sci 14:241–258

    Article  Google Scholar 

  57. Chandran V, Sumithra MG, Karthick A et al (2021) Diagnosis of cervical cancer based on ensemble deep learning network using colposcopy images. Biomed Res Int. https://doi.org/10.1155/2021/5584004

    Article  Google Scholar 

  58. Russakovsky O, Deng J, Su H et al (2015) ImageNet large scale visual recognition challenge. Int J Comput Vis 115:211–252. https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  59. Lin TY, Maire M, Belongie S et al (2014) Microsoft COCO: common objects in context. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), vol 8693. pp 740–755. https://doi.org/10.1007/978-3-319-10602-1_48

  60. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Pereira F, Burges CJ, Bottou L, Weinberger KQ (eds) Advances in neural information processing systems. Curran Associates, Inc., New York

    Google Scholar 

  61. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition 2016-December. pp 770–778. https://doi.org/10.1109/CVPR.2016.90

  62. Xie S, Girshick R, Dollár P et al (2016) Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1492–1500

  63. Iandola FN, Han S, Moskewicz MW et al (2016) SqueezeNet: AlexNet-level accuracy with 50× fewer parameters and < 0.5 MB model size. arXiv preprint arXiv:1602.07360

  64. Zagoruyko S, Komodakis N (2016) Wide residual networks. arXiv preprint arXiv:1605.07146

  65. Szegedy C, Liu W, Jia Y et al (2015) Going deeper with convolutions. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition 07–12-June. pp 1–9. https://doi.org/10.1109/CVPR.2015.7298594

  66. Chollet F (2017) Xception: deep learning with depthwise separable convolutions. In: Proceedings - 30th IEEE conference on computer vision and pattern recognition, CVPR 2017 2017-January. pp 1800–1807. https://doi.org/10.1109/CVPR.2017.195

  67. Redmon J, Farhadi A (2018) YOLOv3: an incremental improvement. https://doi.org/10.48550/arxiv.1804.02767

  68. Liu Z, Lin Y, Cao Y et al (2021) Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 10012–10022

  69. Graham B, El-Nouby A, Touvron H et al (2021) Levit: a vision transformer in convnet’s clothing for faster inference. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 12259–12269

  70. Touvron H, Cord M, Sablayrolles A et al (2021) Going deeper with image transformers. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 32–42

  71. Yuan L, Chen Y, Wang T et al (2021) Tokens-to-token vit: training vision transformers from scratch on imagenet. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 558–567

  72. Heo B, Yun S, Han D et al (2021) Rethinking spatial dimensions of vision transformers. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 11936–11945

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishak Pacal.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pacal, I., Kılıcarslan, S. Deep learning-based approaches for robust classification of cervical cancer. Neural Comput & Applic 35, 18813–18828 (2023). https://doi.org/10.1007/s00521-023-08757-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-08757-w

Keywords

Navigation