Skip to main content

Advertisement

Log in

Multi-verse optimization algorithm- and salp swarm optimization algorithm-based optimization of multilevel inverters

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Renewable energy sources are installed into both distribution and transmission grids more and more with the introduction of smart grid concept. Hence, efficient usage of cascaded H-bridge multilevel inverters (MLIs) for power control applications becomes vital for sustainable electricity. Conventionally, selective harmonic elimination equations need to be solved for obtaining optimum switching angles of MLIs. The objective of this study is to obtain switching angles for MLIs to minimize total harmonic distortion. This study contributes to the solution of this problem by utilizing two recently developed intelligent optimization algorithms: multi-verse optimization algorithm and salp swarm algorithm. Moreover, well-known particle swarm optimization is utilized for MLI optimization problem. Seven-level, 11-level and 15-level MLIs are used to minimize total harmonic distortions. Simulation results with different modulation indexes for seven-, 11- and 15-level MLIs are calculated and compared in terms of the accuracy and solution quality. Numerical calculations are verified by using MATLAB/Simulink-based models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(\omega\) :

The angular velocity

\(\theta _i\) :

The conducting angle of step i

a :

A predefined minimum number

\(a_i, \ldots , y_i\) :

The objects in the universes

b :

A predefined maximum number

\(c_1\) :

Exploration and exploitation parameter in SSA

\(c_2\) :

Random number in the interval [0,1]

\(c_3\) :

Random number in the interval [0,1]

d :

The number of objects

\(F_j\) :

The position of the food source

k :

The number of separate DC sources

L :

Maximum iteration number

l :

Current iteration number

\(l_i\) :

Learning factors

\({\text {lb}}_j\) :

The lower bound for the variables

\({\text {loc}}\) :

Location of the particle

\(m_1\) :

Modulation index

\(N_s\) :

Number of salps

\({\text {NI}}(U_i)\) :

The normalized inflation rate of universe i

p :

Exploitation factor

\(r_i\) :

Random number between 0 and 1

s :

Number of unknowns in SSA

Spd:

Velocity of the particle

T :

Maximum number of iterations

t :

The current iteration

\(u_i\) :

The ith universe

\({\text {ub}}_j\) :

The upper bound for the variables

\(v_0\) :

The initial speed

\(V_i\) :

The voltage component i

\(V_{\mathrm{dc}}\) :

The voltage magnitude of the DC source

\(V_{\mathrm{Lmax}}\) :

The maximum attainable amplitude of the inverter

\(V_{L}^*\) :

The amplitude command of the inverter for a sine wave output phase voltage

\(V_{\mathrm{par}}\) :

A parameter showing the ratio of final speed to initial speed

w :

Inertia weight

\(x_j^1\) :

The leader salp

\(x_{i}^{j}\) :

The jth object in the universe i

\(x_{k}^{j}\) :

The jth object in the universe k selected by roulette wheel mechanism

\(z_i\) :

The object values obtained by transfer operation using wormholes

ANN:

Artificial neural network

CPB:

Cement paste backfill

DC:

Direct current

DE:

Differential evolution

FFT:

Fast Fourier transform

GWO:

Grey wolf optimization

HB:

H-bridge

MLI:

Multilevel inverter

MVO:

Multi-verse optimization

PSO:

Particle swarm optimization

SSA:

Salp swarm algorithm

TDR:

Travelling distance rate

THD:

Total harmonic distortion

WEP:

Wormhole existence probability

WOA:

Whale optimization algorithm

References

  1. Mohd. Ali JS, Krishnaswamy V (2018) An assessment of recent multilevel inverter topologies with reduced power electronics components for renewable applications. Renew Sustain Energy Rev 82:3379–3399

    Google Scholar 

  2. IEEE Application Guide for IEEE Std (2018) 1547 IEEE standard for inter-connecting distributed resources with electric power systems. IEEE Std. 1547.2-2008

  3. California public utilities commission: Rule 21. http://www.cpuc.ca.gov/Rule21/. Accessed 19 Jan 2019

  4. Ozpineci B, Tolbert LM, Chiasson JN (2005) Harmonic optimization of multilevel converters using genetic algorithms. IEEE Power Electron Lett 3(3):92–95

    Google Scholar 

  5. Patel Hasmukh S, Hoft Richard G (1973) Generalized techniques of harmonic elimination and voltage control in thyristor inverters: part I-harmonic elimination. IEEE Trans Ind Appl IA–9(3):310–317

    Google Scholar 

  6. Chiasson J, Tolbert L, McKenzie K, Du Z (2002) Eliminating harmonics in a multilevel converter using resultant theory. In: 2002 IEEE 33rd annual power electronics specialists conference, 2002. pesc 02, vol 2, pp 503–508

  7. Yang K, Zhang Q, Zhang J, Yuan R, Guan Q, Yu W, Wang J (2017) Unified selective harmonic elimination for multilevel converters. IEEE Trans Power Electron 32(2):1579–1590

    Google Scholar 

  8. Yang K, Lan X, Zhang Q, Tang X (2018) Unified selective harmonic elimination for cascaded h-bridge asymmetric multilevel inverter. IEEE J Emerg Sel Top Power Electron 6(4):2138–2146

    Google Scholar 

  9. Hossam RM, Hashem GM, Marei MI (2013) Optimized harmonic elimination for cascaded multilevel inverter. In: 2013 48th international universities power engineering conference (UPEC), Sept, pp 1–6

  10. Kumar J, Das B, Agarwal P (2010) Optimized switching scheme of a cascade multi-level inverter. Electr Power Compon Syst 38(4):445–464

    Google Scholar 

  11. Tang T, Han J, Tan X (2006) Selective harmonic elimination for a cascade multilevel inverter. In: 2006 IEEE international symposium on industrial electronics, vol 2, July, pp 977–981

  12. Ramkumar S, Kamaraj V, Thamizharasan S (2011) Ga based optimization and critical evaluation she methods for three-level inverter. In: 2011 1st international conference on electrical energy systems (ICEES), Jan, pp 115–121

  13. Kavousi A, Vahidi B, Salehi R, Bakhshizadeh MK, Farokhnia N, Fathi SH (2012) Application of the bee algorithm for selective harmonic elimination strategy in multilevel inverters. IEEE Trans Power Electron 27(4):1689–1696

    Google Scholar 

  14. Majidi B, Baghaee HR, Gharehpetian GB, Milimonfared J, Mirsalim M (2008) Harmonic optimization in multi-level inverters using harmony search algorithm. In: IEEE 2nd international power and energy conference, 2008. PECon 2008, Dec, pp 646–650

  15. Hosseini SH, Shahmohammadi S (2012) A generalized optimization in cascade and modular multi-level inverters by harmony search method. In: 2012 12th international conference on control, automation and systems (ICCAS), Oct, pp 1506–1511

  16. Al-Othman AK, Abdelhamid TH (2008) Elimination of harmonics in multilevel inverters with non-equal dc sources using PSO. In: Power electronics and motion control conference, 2008. EPE-PEMC 2008. 13th, Sept, pp 606–613

  17. Memon MA, Mekhilef S, Mubin M (2018) Selective harmonic elimination in multilevel inverter using hybrid APSO algorithm. IET Power Electron 11(10):1673–1680

    Google Scholar 

  18. Gupta VK, Mahanty R (2015) Optimized switching scheme of cascaded h-bridge multilevel inverter using PSO. Int J Electr Power Energy Syst 64:699–707

    Google Scholar 

  19. Haghdar K, Shayanfar HA (2018) Selective harmonic elimination with optimal dc sources in multilevel inverters using generalized pattern search. IEEE Trans Ind Inf 14(7):3124–3131

    Google Scholar 

  20. Dahidah MSA, Konstantinou G, Agelidis VG (2015) A review of multilevel selective harmonic elimination PWM: formulations, solving algorithms, implementation and applications. IEEE Trans Power Electron 30(8):4091–4106

    Google Scholar 

  21. De León-Aldaco SE, Calleja H, Alquicira JA (2015) Metaheuristic optimization methods applied to power converters: a review. IEEE Trans Power Electron 30(12):6791–6803

    Google Scholar 

  22. Ahmed MM, Saad M, Marizan M, Muhammad A (2018) Selective harmonic elimination in inverters using bio-inspired intelligent algorithms for renewable energy conversion applications: a review. Renew Sustain Energy Rev 82:2235–2253

    Google Scholar 

  23. Routray A, Singh RK, Mahanty R (2020) Harmonic reduction in hybrid cascaded multilevel inverter using modified grey wolf optimization. IEEE Trans Ind Appl 56(2):1827–1838

    Google Scholar 

  24. Kumar Kar P, Priyadarshi A, Bhaskar Karanki S (2019) Selective harmonics elimination using whale optimisation algorithm for a single-phase-modified source switched multilevel inverter. IET Power Electron 12(8):1952–1963

    Google Scholar 

  25. Routray A, Singh RK, Mahanty R, Selective harmonic elimination in hybrid cascaded multilevel inverter using modified whale optimization. Int Trans Electr Energy Syst n/a(n/a):e12298

  26. Haghdar K (2020) Optimal dc source influence on selective harmonic elimination in multilevel inverters using teaching-learning-based optimization. IEEE Trans Ind Electron 67(2):942–949

    Google Scholar 

  27. Siddique MD, Mekhilef S, Shah NM, Memon MA (2019) Optimal design of a new cascaded multilevel inverter topology with reduced switch count. IEEE Access 7:24498–24510

    Google Scholar 

  28. Nayyar A, Garg S, Gupta D, Khanna A (2018) Evolutionary computation theory and algorithms. In: Nayyar A, Le D-N, Nguyen NG (eds) Advances in swarm intelligence for optimizing problems in computer science, chapter 1. Chapman and Hall/CRC, New York, pp 1–26

    Google Scholar 

  29. Anand N, Dac-Nhuong L, Gia NN (2018) Advances in swarm intelligence for optimizing problems in computer science, 1st edn. Chapman and Hall/CRC, New York

    MATH  Google Scholar 

  30. Nayyar A, Nguyen NG (2018) Introduction to swarm intelligence. In: Nayyar A, Le D-N, Nguyen NG (eds) Advances in swarm intelligence for optimizing problems in computer science, chapter 3. Chapman and Hall/CRC, New York, pp 53–78

    Google Scholar 

  31. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks, vol 4, pp 1942–1948

  32. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249

    Google Scholar 

  33. Ceylan O (2016) Harmonic elimination of multilevel inverters by moth-flame optimization algorithm. In: 2016 international symposium on industrial electronics (INDEL), Nov, pp 1–5

  34. Seyedali M, Mohammad MS, Abdolreza H (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513

    Google Scholar 

  35. Kumar A, Suhag S (2017) Multiverse optimized fuzzy-PID controller with a derivative filter for load frequency control of multisource hydrothermal power system. Turk J Electr Eng Comput Sci 25:4187–4199

    Google Scholar 

  36. Sulaiman M, Ahmad S, Iqbal J, Khan A, Khan R (2019) Optimal operation of the hybrid electricity generation system using multiverse optimization algorithm. Comput Intell Neurosci 2019:6192980

    Google Scholar 

  37. Ilyas B, Kun X, Mouna C (2017) A new evolutionary neural networks based on intrusion detection systems using multiverse optimization. Appl Intell 48:2315–2327

    Google Scholar 

  38. Hossam F, Hassonah MA, Al-Zoubi MA, Mirjalili S, Aljarah I (2017) A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture. Neural Comput Appl 30:2355–2369

    Google Scholar 

  39. Seyedali M, Gandomi Amir H, Zahra MS, Shahrzad S, Hossam F, Mohammad MS (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Google Scholar 

  40. Xing Z, Jia H (2019) Multilevel color image segmentation based on GLCM and improved salp swarm algorithm. IEEE Access 7:37672–37690

    Google Scholar 

  41. Gurav SB, Kulhalli KV, Desai VV (2020) Fuzzy integrated salp swarm algorithm-based RideNN for prostate cancer detection using histopathology images. Evol Intel. https://doi.org/10.1007/s12065-020-00402-y

    Article  Google Scholar 

  42. Zhang J, Wang Z, Luo X (2018) Parameter estimation for soil water retention curve using the salp swarm algorithm. Water 10(6):815

    Google Scholar 

  43. Li E, Zhou J, Shi X, Jahed Armaghani D, Yu Z, Chen X, Huang P (2020) Developing a hybrid model of salp swarm algorithm-based support vector machine to predict the strength of fiber-reinforced cemented paste backfill. Eng Comput. https://doi.org/10.1007/s00366-020-01014-x

    Article  Google Scholar 

  44. Figlu M, Suvendu R, Bodhisattva D, Banshidhar M, Swamy MNS (2020) An improved scheme for digital mammogram classification using weighted chaotic salp swarm algorithm-based kernel extreme learning machine. Appl Soft Comput 91:106266

    Google Scholar 

  45. Kandiri A, Golafshani EM, Behnood A (2020) Estimation of the compressive strength of concretes containing ground granulated blast furnace slag using hybridized multi-objective ANN and salp swarm algorithm. Construct Build Mater 248:118676

    Google Scholar 

  46. Saleh AS, Songfeng L, Mohamed AE, Ewees Ahmed A (2019) Improved multiobjective salp swarm optimization for virtual machine placement in cloud computing. Human Centric Comput Inf Sci 9(1):15

    Google Scholar 

  47. Rabeh A, Abdelkader A, Asghar HA, Seyedali M (2019) An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models. Energy Convers Manag 179:362–372

    Google Scholar 

  48. Qais MH, Hasanien HM, Alghuwainem S (2019) Enhanced salp swarm algorithm: application to variable speed wind generators. Eng Appl Artif Intell 80:82–96

    Google Scholar 

  49. Mohamed T, Hegazy R, Diab AA, Zaki A-DM (2018) A novel robust methodology based salp swarm algorithm for allocation and capacity of renewable distributed generators on distribution grids. Energies 11:2556

    Google Scholar 

  50. Hasanien HM, El-Fergany AA (2019) Salp swarm algorithm-based optimal load frequency control of hybrid renewable power systems with communication delay and excitation cross-coupling effect. Electr Power Syst Res 176:105938

    Google Scholar 

  51. Fathy A, Rezk H, Nassef AM (2019) Robust hydrogen-consumption-minimization strategy based salp swarm algorithm for energy management of fuel cell/supercapacitor/batteries in highly fluctuated load condition. Renew Energy 139(C):147–160

    Google Scholar 

  52. Abualigah L, Shehab M, Alshinwan M, Alabool H (2019) Salp swarm algorithm: a comprehensive survey. Neural Comput Appl. https://doi.org/10.1007/s00521-019-04629-4

    Article  Google Scholar 

  53. Holland JH (1992) Professor of psychology and of electrical engineering and computer science John H. Holland, and Senior lecturer in human Resource Management Holland. In: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, Google-Books-ID: 5EgGaBkwvWcC. MIT Press

  54. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    MathSciNet  MATH  Google Scholar 

  55. Hossein GA, Xin-She Y, Hossein AA (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35

    Google Scholar 

  56. Khomfoi S, Tolbert L (2011) Multilevel power converters. In: Rashid MH (ed) Power electronics handbook; devices, circuits and applications, chapter 17, 3rd edn. Butterworth-Heinemann, Oxford, pp 455–487

    Google Scholar 

  57. Awais M, Raza MA, Ilyas H, Younus HB, Abbas T (2016) A novel problem formulation for selection of switching angles for minimization of total harmonic distortion in cascaded multilevel inverters. In: 2016 international conference on emerging technologies (ICET), Oct 2016, pp 1–6

  58. Awais M, Ilyas H, Younus HB, Raza MA, Abbas T (2016) Optimal switching angles for minimization of total harmonic distortion in single phase cascaded multilevel inverters. In: 2016 19th international multi-topic conference (INMIC), Dec, pp 1–6

  59. Seyedali M, Mohammad MS, Andrew L (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Google Scholar 

  60. Ssa source codes. http://www.alimirjalili.com/SourceCodes/SSA.zip. Accessed 10 Apr 2019

  61. Mvo source codes. http://www.alimirjalili.com/SourceCodes/MVO.zip. Accessed 10 Apr 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oğuzhan Ceylan.

Ethics declarations

Conflict of interest

The author declares that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceylan, O. Multi-verse optimization algorithm- and salp swarm optimization algorithm-based optimization of multilevel inverters. Neural Comput & Applic 33, 1935–1950 (2021). https://doi.org/10.1007/s00521-020-05062-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05062-8

Keywords

Navigation