Skip to main content
Log in

Adaptive near optimal neural control for a class of discrete-time chaotic system

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, an adaptive critic neural network controller is designed for a class of discrete-time chaotic system. The critic neural network is used to approximate the long-term function. In contrast with the existing results for discrete-time chaotic systems, in this paper, a near optimal control input can be generated when the long-term function is minimized. It is proven that the tracking error, the adaptation laws and the control input are uniformly bounded. A simulation example is employed to illustrate the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang Y, Wong KW, Liao XF, Chen GR (2011) A new chaos-based fast image encryption algorithm. Appl Soft Comput 11:514–522

    Article  Google Scholar 

  2. Ogorzalek MJ (1993) Taming chaos: part II—control. IEEE Trans Circ Syst I 40:700–706

    Article  MATH  Google Scholar 

  3. Richter H, Reinschke KJ (1998) Local control of chaotic systems—a Lyapunov approach. Int J Bifur Chaos 8:1565–1573

    Article  MATH  Google Scholar 

  4. Sinha SC, Henrichs JT, Ravindra B (2000) A general approach in the design of active controllers for nonlinear systems exhibiting chaos. Int J Bifur Chaos 10:165–178

    Article  MathSciNet  MATH  Google Scholar 

  5. Pyragas K (1992) Continuous control of chaos by self-controlling feedback. Phys Lett A 170:421–428

    Article  Google Scholar 

  6. Gallias Z (1995) New method for stabilizing of unstable periodic orbits in chaotic systems. Int J Bifur Chaos 5:281–295

    Article  MATH  Google Scholar 

  7. Yu X, Chen G, Xia Y, Song Y, Cao Z (2001) An invariant-manifold-based method for chaos control. IEEE Trans Circ Syst I 48:930–937

    MathSciNet  MATH  Google Scholar 

  8. Wang XY, He YJ (2008) Projective synchronization of fractional order chaotic system based on linear separation. Phys Lett A 372:435–441

    Article  MATH  Google Scholar 

  9. Wang XY, Nian FZ, Guo G (2009) High precision fast projective synchronization in chaotic (hyperchaotic) systems. Phys Lett A 373:1754–1761

    Article  MATH  Google Scholar 

  10. Liu HJ, Wang XY, Zhu QL (2011) Asynchronous anti-noise hyper chaotic secure communication system based on dynamic delay and state variables switching. Phys Lett A 375:2828–2835

    Article  MATH  Google Scholar 

  11. Hua CC, Guan XP (2004) Adaptive control for chaotic systems. Chaos, Solitons Fractals 22:55–60

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang HZ, Qin HS, Chen GR (1998) Adaptive control of chaotic systems with uncertainties. Int J Bifurc Chaos 8:2041–2046

    Article  MATH  Google Scholar 

  13. Hua CC, Guan XP, Shi P (2005) Adaptive feedback control for a class of chaotic systems. Chaos, Solitons Fractals 23:757–765

    Article  MathSciNet  Google Scholar 

  14. Hua CC, Guan XP, Li XL, Shi P (2004) Adaptive observer-based control for a class of chaotic systems. Chaos, Solitons Fractals 22:103–110

    Article  MathSciNet  MATH  Google Scholar 

  15. Hong YG, Qin HS, Chen GR (1998) Adaptive synchronization of chaotic systems via state or output feedback. Int J Bifurc Chaos 11:1149–1158

    Article  MathSciNet  Google Scholar 

  16. Luo C, Wang XY (2013) Adaptive modified function projective lag synchronization of hyperchaotic complex systems with fully uncertain parameters. J Vib Control. doi:10.1177/1077546313476727

    Google Scholar 

  17. Yao J, Guan ZH, Hill DJ (2005) Adaptive switching control and synchronization of chaotic systems with uncertainties. Int J Bifurc Chaos 15:3381–3390

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang HY, Zhang XL (2011) Study on the globally exponentially attractive set of a new chaotic system and its application. Int J Inform Syst Sci 7:34–41

    Google Scholar 

  19. Chen M, Jiang CS, Jiang B, Wu QX (2009) Sliding mode synchronization controller design with neural network for uncertain chaotic systems. Chaos, Solitons Fractals 39:1856–1863

    Article  MATH  Google Scholar 

  20. Chen M, Chen WH (2009) Robust adaptive neural network synchronization controller design for a class of time delay uncertain chaotic systems. Chaos, Solitons Fractals 41:2716–2724

    Article  MATH  Google Scholar 

  21. Yamamoto S, Hino T, Ushio T (2001) Dynamic delayed feedback controllers for chaotic discrete time systems. IEEE Trans Circ Syst I 48:785–789

    Article  MATH  Google Scholar 

  22. Li DJ (2012) Adaptive output feedback control of uncertain nonlinear chaotic systems based on dynamic surface control technique. Nonlinear Dyn 68:235–243

    Article  MATH  Google Scholar 

  23. Liu N, Li J, Guan ZH, Li D, Zheng GL (2013) Chaos generation for a class of nonlinear complex networks. Int J Bifur Chaos 23:1350018

    Article  MathSciNet  Google Scholar 

  24. Jiang GP, Chen GR, Tang WKS (2003) A new criterion for chaos synchronization using linear state feedback control. Int J Bifur Chaos 13:2343–2351

    Article  MATH  Google Scholar 

  25. Lu J, Wei R, Wang X, Wang Z (2001) Backstepping control of discrete time chaotic systems with application to the Henon systems. IEEE Trans Circ Syst I 48:1359–1363

    Article  MathSciNet  MATH  Google Scholar 

  26. Hu Q, Ma G, Xie L (2008) Robust and adaptive variable structure output feedback control of uncertain systems with input nonlinearity. Automatica 44:552–559

    Article  MathSciNet  MATH  Google Scholar 

  27. Chen CLP, Liu YJ, Wen GX (2013) Fuzzy neural network-based adaptive control for a class of uncertain nonlinear stochastic systems. IEEE Trans Cybern. doi:10.1109/TCYB.2013.2262935

    Google Scholar 

  28. Li HY, Yu J, Hilton C, Liu H (2013) Adaptive sliding mode control for nonlinear active suspension systems using T–S fuzzy model. IEEE Trans Ind Electro 60:3328–3338

    Article  Google Scholar 

  29. Yoo SJ, Park JB, Choi YH (2008) Adaptive output feedback control of flexible-joint robots using neural networks: dynamic surface design approach. IEEE Trans Neural Netw 19:1712–1726

    Article  Google Scholar 

  30. Ge SS, Li GY, Lee TH (2003) Adaptive NN control for a class of strict-feedback discrete-time nonlinear systems. Automatica 39:807–819

    Article  MathSciNet  MATH  Google Scholar 

  31. Chen WS, Li JM (2008) Decentralized output-feedback neural control for systems with unknown interconnections. IEEE Trans Syst Man Cybern B Cybern 38:258–266

    Article  Google Scholar 

  32. Cui R, Ren B, Ge SS (2012) Synchronised tracking control of multi-agent system with high-order dynamics. IET Control Theory Appl 6:603–614

    Article  MathSciNet  Google Scholar 

  33. Cui R, Yan W (2012) Mutual synchronization of multiple robot manipulators with unknown dynamics. J Intell Robot Syst 68:105–119

    Article  MATH  Google Scholar 

  34. Tong SC, Li Y, Li YM, Liu YJ (2011) Observer-based adaptive fuzzy backstepping control for a class of stochastic nonlinear strict-feedback systems. IEEE Trans Syst Man Cybern B Cybern 41:1693–1704

    Article  Google Scholar 

  35. Tong SC, He XL, Zhang HG (2009) A combined backstepping and small-gain approach to robust adaptive fuzzy output feedback control. IEEE Trans Fuzzy Syst 17:1059–1069

    Article  Google Scholar 

  36. Tong SC, Li CY, Li YM (2009) Fuzzy adaptive observer backstepping control for MIMO nonlinear systems. Fuzzy Sets Syst 160:2755–2775

    Article  MathSciNet  MATH  Google Scholar 

  37. Li DJ (2013) Adaptive neural network control for a class of continuous stirred tank reactor systems. Sci China Inf Sci. doi:10.1007/s11432-013-4824-7

    Google Scholar 

  38. Li DJ (2014) Neural network control for a class of continuous stirred tank reactor process with dead-zone input. Neurocomputing 131:453–459

    Article  Google Scholar 

  39. Lin CK (2003) A reinforcement learning adaptive fuzzy controller for robots. Fuzzy Sets Syst 137:339–352

    Article  MATH  Google Scholar 

  40. Shih P, Jagannathan S (2007) Reinforcement learning based output-feedback controller for complex nonlinear discrete-time system. IEEE 22nd international symposium on intelligent control, 1–3, 407–412

  41. Feng G, Chen GR (2005) Adaptive control of discrete-time chaotic systems: a fuzzy control approach. Chaos, Solitons Fractals 23:459–467

    Article  MathSciNet  MATH  Google Scholar 

  42. Chen GR, Dong XN (1998) From chaos to order: methodologies, perspectives, and applications. World Scientific, Singapore 3, 1363–1409

  43. Ott E, Grebogi C, Yorke JA (1990) Controlling chaos. Phys Rev Lett 64:1196–1199

    Article  MathSciNet  MATH  Google Scholar 

  44. Tanaka K, Ikeda T, Wang HO (1998) A unified approach to controlling chaos via LMI-based fuzzy control system design. IEEE Trans Circ Syst I 45:1021–1040

    Article  MathSciNet  MATH  Google Scholar 

  45. Yang QM, Jagannathan S (2012) Reinforcement learning controller design for affine nonlinear discrete-time systems using online approximators. IEEE Trans Syst Man Cybern B Cybern 42:377–390

    Article  Google Scholar 

  46. Yang QM, Vance JB, Jagannathan S (2008) Control of nonaffine nonlinear discrete-time systems using reinforcement learning-based linearly parameterized neural networks. IEEE Trans Syst Man Cybern B Cybern 38:994–1001

    Article  Google Scholar 

  47. Park J, Sandberg IW (1991) Universal approximation using radial-basis-function networks. Neural Comput 3:246–257

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Gao, Y. & Liu, YJ. Adaptive near optimal neural control for a class of discrete-time chaotic system. Neural Comput & Applic 25, 1111–1117 (2014). https://doi.org/10.1007/s00521-014-1595-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-014-1595-z

Keywords

Navigation