Skip to main content

Advertisement

Log in

Understanding the impact of taste changes in oncology care

  • Review Article
  • Published:
Supportive Care in Cancer Aims and scope Submit manuscript

Abstract

Purpose

Taste perception is frequently altered in cancer patients. The purpose of this review is to provide an update on advances in understanding of the basic biology and physiology of taste and how taste and flavor may be impacted in cancer and its treatment.

Methods

A succinct review of the literature on the biology and neurology of taste, taste evaluation, and the impact in oncology is provided.

Results

Advances have occurred in the study of the gustatory system. Taste and smell are commonly affected during cancer care, and specific chemosensory complaints may persist in large numbers of cancer survivors. Limited study in oncology patients is available despite the significant impact that taste and smell have on oral intake and general physical and social well-being.

Conclusions

Taste and flavor has had limited study in cancer therapy. Impact on taste and flavor can result in changes ranging from elimination of taste to taste distortions that may be associated with taste aversions, nausea, and dietary compromise. New therapeutics and new approaches in oncology may have additional impact upon taste that requires further study. This paper reviews the current understanding of taste function, taste testing, and its potential impact on cancer care, to serve as a guide for directing further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Receptors in the gut have been identified that respond to amino acids, peptides, sugars, and bitter compounds by either releasing local peptides or by activating vagal afferents [810]. Since such extraoral structures do not contribute to taste perception per se, they are not discussed, as such, in this review. Nonetheless, it is important to recognize that stimulation of these receptors within the oral cavity is just the beginning phase of a complex interrelation between taste-related chemicals, digestion, and gastric function.

References

  1. Hovan AJ, Williams PM, Stevenson-Moore P, et al. (2010) A systematic review of dysgeusia induced by cancer therapies. Support Care Cancer 18:1081–1087

    Article  PubMed  Google Scholar 

  2. Epstein JB, Barasch A (2010) Taste disorders in cancer patients: pathogenesis, and approach to assessment and management. Oral Oncol 46:77–81

    Article  PubMed  Google Scholar 

  3. Chaudhari N, Landin AM, Roper SD (2000) A metabotropic glutamate receptor variant functions as a taste receptor. Nat Neurosci 3:113–119

    Article  CAS  PubMed  Google Scholar 

  4. Hawkes CH (2002) Anatomy and physiology of taste sense. Smell and Taste Complaints, Butterworth Heinemann, Amsterdam, pp 123–45

  5. Bromley SM, Doty RL (2015) Clinical disorders affecting taste: an update. In: Doty RL (ed) Handbook of olfaction and gustation, 3rd edn. John Wiley & Sons, Hoboken, N.J., pp. 887–910

    Chapter  Google Scholar 

  6. Prescott J, Stevenson R (2015) Chemosensory integration and the perception of flavor. In: Doty RL (ed) Handbook of olfaction and gustation, 3rd edn. John Wiley & Sons, Hoboken, N.J., pp. 1007–1026

    Google Scholar 

  7. Rolls ET (2015) Neural integration of taste, smell, oral texture, and visual modalities. In: Doty RL (ed) Handbook of olfaction and gustation, 3rd edn. John Wiley & Sons, Hoboken, N.J., pp. 1027–1050

    Chapter  Google Scholar 

  8. Sternini C, Anselmi L, Rozengurt E (2008) Enteroendocrine cells: a site of ‘taste’ in gastrointestinal chemosensing. Curr Opin Endocrinol Diabetes Obes 15:73–78

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Rozengurt E, Sternini C (2007) Taste receptor signaling in the mammalian gut. Curr Opin Pharmacol 7:557–562

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Kokrashvili Z, Mosinger B, Margolskee RF (2009) Taste signaling elements expressed in gut enteroendocrine cells regulate nutrient-responsive secretion of gut hormones. Am J Clin Nutr 90:822S–825S

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Roper SD (2014) TRPs in taste and chemesthesis. Hand Exp Pharmacol 223:827–871

    Article  CAS  Google Scholar 

  12. Murray RG (1973) The ultrastructure of taste buds. In: Friedmann I (ed) The ultrastructure of sensory organs. North Holland Publishing Company, Amsterdam, pp. 1–81

    Google Scholar 

  13. Witt M, Reutter K (2015) Anatomy of the tongue and taste buds. In: Doty RL (ed) Handbook of olfaction and gustation, 3rd edn. John Wiley & Sons, Hoboken, N.J., pp. 637–663

    Chapter  Google Scholar 

  14. Lebenthal E, Lee PC (1984) Alternative pathways for digestion and adsoprtion in early infancy. J Pediatr GastroenterolNutrition 3:1–3

    Article  CAS  Google Scholar 

  15. Murray RD, Kerzner B, Sloan HR, Juhling MH, Gilbert M, Ailabouni A (1986) The contribution of salivary amylase to glucose polymer hydrolysis in premature infants. Pediatr Res 20:186–191

    Article  CAS  PubMed  Google Scholar 

  16. Beidler LM, Smallman RL (1965) Renewal of cells within taste buds. J Cell Biol 27:263–272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Hevezi P, Moyer BD, Lu M, et al. (2009) Genome-wide analysis of gene expression in primate taste buds reveals links to diverse processes. PLoS One 4:e6395

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Chaudhari N, Roper SD (2010) The cell biology of taste. J Cell Biol 190:285–296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Chang RB, Waters H, Liman ER (2010) A proton current drives action potentials in genetically identified sour taste cells. Proc Natl Acad Sci U S A 107:22320–22325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Mennella JA, Beauchamp GK (1993) The effects of repeated exposure to garlic-flavored milk on the nursling’s behavior. Pediatr Res 34:805–808

    Article  CAS  PubMed  Google Scholar 

  21. Frank M, Pfaffmann C (1969) Taste nerve fibers: a random distribution of sensitivities to four tastes. Science 164:1183–1185

    Article  CAS  PubMed  Google Scholar 

  22. Pfaffmann C (1941) Gustatory afferent impulses. J Cell Comp Physiol 17:253–258

    Article  Google Scholar 

  23. Firestein SJ, Margolskee RF, Kinnamon S 1999 “Taste” Basic Neurochemistry: Molecular, Cellular and Medical Aspects (6th edition). Siegel GJ, Agranoff BW, Albers RW, et al., eds. Lippincott-Raven, Philadelphia, Chapter 48.

  24. Chandrashekar J, Hoon MA, Ryba NJ, Zuker CS (2006) The receptors and cells for mammalian taste. Nature 16(444):288–294

    Article  CAS  Google Scholar 

  25. Chandrashekar J, Mueller KL, Hoon MA, et al. (2000) T2Rs function as bitter taste receptors. Cell 100:703–711

    Article  CAS  PubMed  Google Scholar 

  26. Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS (2001) Mammalian sweet taste receptors. Cell 10(106):381–390

    Article  Google Scholar 

  27. Li X, Staszewski L, Xu H, Durick K, Zoller M, Adler E (2002) Human receptors for sweet and umami taste. Proc Natl Acad Sci U S A 99:4692–4696

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Nelson G, Chandrashekar J, Hoon MA, et al. (2002) An amino-acid taste receptor. Nature 14(416):199–202

    Article  CAS  Google Scholar 

  29. Zhao GQ, Zhang Y, Hoon MA, et al. (2003) The receptors for mammalian sweet and umami taste. Cell 115:255–266.

  30. Li X (2009) T1R receptors mediate mammalian sweet and umami taste. Am J Clin Nutr 90:733S–737S

    Article  CAS  PubMed  Google Scholar 

  31. Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS (2001) Mammalian sweet taste receptors. Cell 106:381–390

    Article  CAS  PubMed  Google Scholar 

  32. Li X, Bachmanov AA, Maehashi K, et al. (2011) Sweet taste receptor gene variation and aspartame taste in primates and other species. Chem Senses 36:453–475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Ji M, Su X, Su X, et al. (2014) Identification of novel compounds for human bitter taste receptors. Chem Biol Drug Des 84:63–74

    Article  CAS  PubMed  Google Scholar 

  34. Meyerhof W, Batram C, Kuhn C, et al. (2010) The molecular receptive ranges of human TAS2R bitter taste receptors. Chem Senses 35:157–170

    Article  CAS  PubMed  Google Scholar 

  35. Behrens M, Foerster S, Staehler F, Raguse JD, Meyerhof W (2007) Gustatory expression pattern of the human TAS2R bitter receptor gene family reveals a heterogenous population of bitter responsive taste receptor cells. J Neurosci 27:12630–12640

    Article  CAS  PubMed  Google Scholar 

  36. Ruiz-Avila L, McLaughlin SK, Wildman D, et al. (1995) Coupling of bitter receptor to phosphodiesterase through transducin in taste receptor cells. Nature 376:80–85

    Article  CAS  PubMed  Google Scholar 

  37. Huang L, Shanker YG, Dubauskaite J, et al. (1999) Ggamma13 colocalizes with gustducin in taste receptor cells and mediates IP3 responses to bitter denatonium. Nat Neurosci 2:1055–1062

    Article  CAS  PubMed  Google Scholar 

  38. Rossler P, Kroner C, Freitag J, Noe J, Breer H (1998) Identification of a phospholipase C beta subtype in rat taste cells. Europ J Cell Biol 77:253–261

    Article  CAS  PubMed  Google Scholar 

  39. Simon SA, de Araujo IE, Gutierrez R, Nicolelis MA (2006) The neural mechanisms of gustation: a distributed processing code. Nat Rev Neurosci 7:890–901

    Article  CAS  PubMed  Google Scholar 

  40. Roper SD (2007) Signal transduction and information processing in mammalian taste buds. Pflugers Arch 454:759–776

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Perez CA, Huang L, Rong M, et al. (2002) A transient receptor potential channel expressed in taste receptor cells. Nat Neurosci 5:1169–1176

    Article  CAS  PubMed  Google Scholar 

  42. Huang YJ, Maruyama Y, Dvoryanchikov G, Pereira E, Chaudhari N, Roper SD (2007) The role of pannexin 1 hemichannels in ATP release and cell-cell communication in mouse taste buds. Proc Natl Acad Sci U S A 104:6436–6441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Liu D, Liman ER (2003) Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc Natl Acad Sci U S A 100:15160–15165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Kinnamon S (2012) Taste receptor signaling – from tongues to lungs. Acta Physiol 204:158–168

    Article  CAS  Google Scholar 

  45. Takami S, Getchell TV, McLaughlin SK, Margolskee RF, Getchell ML (1994) Human taste cells express the G-protein alpha-gustducin and neuron-specific enolase. Molecular Brain Res 22:193–203

    Article  CAS  Google Scholar 

  46. Clapp TR, Trubey KR, Vandenbeuch A, et al. (2008) Tonic activity of galpha-gustducin regulates taste cell responsivity. FEBS Lett 12(582):3783–3787

    Article  CAS  Google Scholar 

  47. Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H (2006) Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc Natl Acad Sci U S A 103:12569–12574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. LopezJimenez ND, Cavenagh MM, Sainz E, Cruz-Ithier MA, Battey JF, Sullivan SL (2006) Two members of the TRPP family of ion channels, Pkd1l3 and Pkd2l1, are co-expressed in a subset of taste receptor cells. J Neurochem 98:68–77

    Article  CAS  PubMed  Google Scholar 

  49. Roper SD (2015) The taste of table salt. Pflugers Arch 467:457–463

    Article  CAS  PubMed  Google Scholar 

  50. Heck GL, Mierson S, DeSimone JA (1984) Salt taste transduction occurs through an amiloride-sensitive sodium transport pathway. Science 223:403–405

    Article  CAS  PubMed  Google Scholar 

  51. Lindemann B (2001) Receptors and transduction in taste. Nature 413:219–225

    Article  CAS  PubMed  Google Scholar 

  52. Lin W, Finger TE, Rossier BC, Kinnamon SC (1999) Epithelial Na+ channel subunits in rat taste cells: localization and regulation by aldosterone. J Comp Neurol 15(405):406–420

  53. Oka Y, Butnaru M, von BL, Ryba NJ, Zuker CS (2013) High salt recruits aversive taste pathways. Nature 494:472–475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Mattes RD (2011) Accumulating evidence supports a taste component for free fatty acids in humans. Physiol Behav 104:624–631

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Tucker RM, Mattes RD, Running CA (2014) Mechanisms and effects of “fat taste” in humans. Biofactors 40:313–326

    Article  CAS  PubMed  Google Scholar 

  56. Kulkarni BV, Mattes RD (2014) Lingual lipase activity in the orosensory detection of fat by humans. Am J Physiol Regul Integr Comp Physiol 306:R879–R885

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Gilbertson TA, Fontenot DT, Liu L, Zhang H, Monroe WT (1997) Fatty acid modulation of K+ channels in taste receptor cells: gustatory cues for dietary fat. Am J Physiol 272:C1203–C1210

    CAS  PubMed  Google Scholar 

  58. Fukuwatari T, Kawada T, Tsuruta M, et al. (1997) Expression of the putative membrane fatty acid transporter (FAT) in taste buds of the circumvallate papillae in rats. FEBS Lett 414:461–464

    Article  CAS  PubMed  Google Scholar 

  59. Ibrahimi A, Abumrad NA (2002) Role of CD36 in membrane transport of long-chain fatty acids. Curr Opin Clin Nutr Metab Care 139-145

  60. Gaillard D, Laugerette F, Darcel N, et al 2008 The gustatory pathway is involved in CD36-mediated orosensory perception of long-chain fatty acids in the mouse. FASEB J 1458-68

  61. Laugerette F, Passilly-Degrace P, Patris B, et al. (2005) CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J Clin Invest 115:3177–3184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Ehehalt R, Sparla R, Kulaksiz H, Herrmann T, Fullekrug J, Stremmel W (2008) Uptake of long chain fatty acids is regulated by dynamic interaction of FAT/CD36 with cholesterol/sphingolipid enriched microdomains (lipid rafts). BMC Cell Biol 9:45

    Article  PubMed Central  PubMed  Google Scholar 

  63. Cartoni C, Yasumatsu K, Ohkuri T, et al. (2010) Taste preference for fatty acids is mediated by GPR40 and GPR120. J Neurosci 30:8376–8382

    Article  CAS  PubMed  Google Scholar 

  64. Febbraio M, Guy E, Coburn C, et al. (2002) The impact of overexpression and deficiency of fatty acid translocase (FAT)/CD36. Mol Cell Biochem 239:193–197

    Article  CAS  PubMed  Google Scholar 

  65. Su X, Abumrad NA (2009) Cellular fatty acid uptake: a pathway under construction. Trends Endocrinol Metab 20:72–77

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Martin C, Chevrot M, Poirier H, Passilly-Degrace P, Niot I, et al. (2011) CD36 as a lipid sensor. Physiol Behav 105:36–42

    Article  CAS  PubMed  Google Scholar 

  67. Zhou S, Tang QJ, Zhang Z, et al. (2015) Nutritional composition of three domesticated culinary-medicinal mushrooms: oudemansiella sudmusida, lentinus squarrosulus, and tremella aurantialba. Int J Med Mushrooms 17:43–49

    Article  PubMed  Google Scholar 

  68. Chen CS, Bench EM, Allerton TD, Schreiber AL, Arceneaux III KP, Primeaux SD (2013) Preference for linoleic acid in obesity-prone and obesity-resistant rats is attenuated by the reduction of CD36 on the tongue. Am J Physiol Regul Integr Comp Physiol 305:R1346–R1355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Keller KL, Liang LC, Sakimura J, et al. (2012) Common variants in the CD36 gene are associated with oral fat perception, fat preferences, and obesity in African Americans. Obesity (Silver Spring) 20:1066–1073

    Article  CAS  Google Scholar 

  70. Itoh Y, Kawamata Y, Harada M, et al. (2003) Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 13(422):173–176

    Article  CAS  Google Scholar 

  71. Iwata S, Yoshida R, Ninomiya Y (2014) Taste transductions in taste receptor cells: basic tastes and moreover. Curr Pharm Des 20:2684–2692

    Article  CAS  PubMed  Google Scholar 

  72. Sclafani A, Zukerman S, Glendinning JI, Margolskee RF (2007) Fat and carbohydrate preferences in mice: the contribution of alpha-gustducin and Trpm5 taste-signaling proteins. Am J Physiol Regul Integr Comp Physiol 293:R1504–R1513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Liu P, Shah BP, Croasdell S, Gilbertson TA (2011) Transient receptor potential channel type M5 is essential for fat taste. J Neurosci 31:8634–8642

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Hamilton JA, Kamp F (1999) How are free fatty acids transported in membranes? Is it by proteins or by free diffusion through the lipids? Diabetes 48:2255–2269

    Article  CAS  PubMed  Google Scholar 

  75. Scott K (2005) Taste recognition: food for thought. Neuron 48:455–464

    Article  CAS  PubMed  Google Scholar 

  76. Travers SP, Norgren R (1995) Organization of orosensory responses in the nucleus of the solitary tract of rat. J Neurophysiol 73:2144–2162

    CAS  PubMed  Google Scholar 

  77. Rosen AM, Roussin AT, Di Lorenzo PM (2010) Water as an independent taste modality. Front Neurosci 4:175

    Article  PubMed Central  PubMed  Google Scholar 

  78. Beckstead RM, Morse JR, Norgren R (1980) The nucleus of the solitary tract in the monkey: projections to the thalamus and brain stem nuclei. J Comp Neurol 15(190):259–282

    Article  Google Scholar 

  79. Pritchard TC, Hamilton RB, Morse JR, Norgren R (1986) Projections of thalamic gustatory and lingual areas in the monkey, Macaca fascicularis. J Comp Neurol 244:213–228

    Article  CAS  PubMed  Google Scholar 

  80. Rolls ET, Yaxley S, Sienkiewicz ZJ (1990) Gustatory responses of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. J Neurophysiol 64:1055–1066

    CAS  PubMed  Google Scholar 

  81. Rolls ET, Scott TR, Sienkiewicz ZJ, Yaxley S (1988) The responsiveness of neurones in the frontal opercular gustatory cortex of the macaque monkey is independent of hunger. J Physiol 397:1–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Cavada C, Company T, Tejedor J, Cruz-Rizzolo RJ, Reinoso-Suarez F (2000) The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cereb Cortex 10:220–242

    Article  CAS  PubMed  Google Scholar 

  83. Rolls ET (2000) Taste, olfactory, visual and somatosensory representations of the sensory properties of foods in the brain, and their relation to the control of food intake. In: Berthoud HR, Seeley RJ (eds) Neural and metabolic control of macronutrient intake. CRC Press, Boca Raton, pp. 247–262

    Google Scholar 

  84. Green BG, Hayes JE (2004) Individual differences in perception of bitterness from capsaicin, piperine and zingerone. Chem Senses 29:53–60

    Article  PubMed  Google Scholar 

  85. Bornstein WS (1940) Cortical representation of taste in man and monkey. II. The localization of the cortical taste area in man, a method of measuring impairment of taste in man. Yale J Biol Med 13:133–156

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Snyder DJ, Sims CA, Bartoshuk LM (2015) Psychophysical measures of human oral sensation. In: Doty RL (ed) Handbook of olfaction and gustation. John Wiley & Sons, Hoboken, N.J., pp. 751–774

    Google Scholar 

  87. Hawkes CH, Doty RL (2016) Smell and taste complaints. Cambridge University Press, Cambridge

    Google Scholar 

  88. Murphy C, Quinonez C, Nordin S (1995) Reliability and validity of electrogustometry and its application to young and elderly persons. Chem Senses 20:499–503

    Article  CAS  PubMed  Google Scholar 

  89. Hara S (1955) Interrelationship among stimulus intensity, stimulated area and reaction time in the human gustatory sensation. Bull Tokyo Med Dental Univ 2:147–157

    Google Scholar 

  90. Smutzer G, Lam S, Hastings L, et al. (2008) A test for measuring gustatory function. Laryngoscope 118:1411–1416

    Article  PubMed Central  PubMed  Google Scholar 

  91. Doty RL, Laing DG (2003) Psychophysical measurement of olfactory function, including odorant mixture assessment. In: Doty RL (ed) Handbook of olfaction and gustation, 2nd edn. Marcel Dekker, New York, pp. 203–228

    Chapter  Google Scholar 

  92. Hahn H, Günther H (1932) Uber die reize und die reizbedingungen des geschmackssinnes. Pflügers Arch Ges Physiol 231:48–67

    Article  Google Scholar 

  93. ASTM (1997) Standard practice for determination of odor and taste thresholds by a forced-choice ascending concentration series method of limits (E679-97 & E679-04). American Society for Testing and Materials, Philadelphia

  94. Jones FN (1956) A forced-choice method of limits. Am J Psychol 69:672–673

    Article  CAS  PubMed  Google Scholar 

  95. Kunka M, Doty RL, Settle RG (1981) An examination of intertrial interval and gender influences on sucrose detection thresholds established by a modified staircase procedure. Perception 10:35–38

    Article  CAS  PubMed  Google Scholar 

  96. Harris H, Kalmus H (1949) The measurement of taste sensitivity to phenylthiourea (P.T.C.). Annals of Eugenics 15:24–31

    Article  CAS  PubMed  Google Scholar 

  97. Barnicot NA, Harris H, Kalmus H (1951) Taste thresholds of further eighteen compounds and their correlation with P.T.C thresholds. Annals of Eugenics 16:119–128

    Article  CAS  PubMed  Google Scholar 

  98. Harris H, Kalmus H (1951) The distribution of taste thresholds for phenylthiourea of 384 sib pairs. Ann Eugen 16:226–230

    Article  CAS  PubMed  Google Scholar 

  99. Henkin RI, Solomon DH (1962) Salt-taste threshold in adrenal insufficiency in man. J Clin Endocrinol Metab 22:856–858

    CAS  PubMed  Google Scholar 

  100. Henkin RI, Gill JR, Bartter FC (1963) Studies on taste thresholds in normal man and in patients with adrenal cortical insufficiency: the role of adrenal cortical steroids and of serum sodium concentration. J Clin Invest 42:727–735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Desai H, Smutzer G, Coldwell SE, Griffith JW (2011) Validation of edible taste strips for identifying PROP taste recognition thresholds. Laryngoscope 121:1177–1183

    Article  PubMed Central  PubMed  Google Scholar 

  102. Tucker R, Nuessle TM, Garneau NL, Smutzer G, Mattes RD (2015) No difference in perceived intensity of linoleic acid in the oral cavity between obese and non-obese adults. Chem Senses 40:557–563

    Article  PubMed Central  PubMed  Google Scholar 

  103. Soter A, Kim J, Jackman A, Tourbier I, Kaul A, Doty RL (2008) Accuracy of self-report in detecting taste dysfunction. Laryngoscope 118:611–617

    Article  PubMed  Google Scholar 

  104. Stinton N, Atif MA, Barkat N, Doty RL (2010) Influence of smell loss on taste function. Behav Neurosci 124:256–264

    Article  PubMed  Google Scholar 

  105. Sandell MA, Breslin PA (2006) Variability in a taste-receptor gene determines whether we taste toxins in food. Curr Biol 16:R792–R794

    Article  CAS  PubMed  Google Scholar 

  106. Ganzer H, Touger-Decker R, Byham-Gray L, Murphy BA, Epstein JB (2015) The eating experience after treatment for head and neck cancer: a review of the literature. Oral Oncol 51:634–642

    Article  PubMed  Google Scholar 

  107. Doty RL (2015) Handbook of olfaction and gustation, 3rd edn. John Wiley & Sons, Inc., Hoboken, N.J., pp. 1–1217

    Google Scholar 

  108. Mossman K, Shatzman A, Chencharick J (1982) Long-term effects of radiotherapy on taste and salivary function in man. Int J Radiat Oncol Biol Phys 8:991–997

    Article  CAS  PubMed  Google Scholar 

  109. Zheng WK, Inokuchi A, Yamamoto T, Komiyama S (2002) Taste dysfunction in irradiated patients with head and neck cancer. Fukuoka Igaku Zasshi 93:64–76

    PubMed  Google Scholar 

  110. Fernando IN, Patel T, Billingham L, et al. (1995) The effect of head and neck irradiation on taste dysfunction: a prospective study. Clin Oncol (Royal College of Radiologists) 7:173–178

    Article  CAS  Google Scholar 

  111. Yamashita H, Nakagawa K, Tago M, et al. (2006) Taste dysfunction in patients receiving radiotherapy. Head Neck 28:508–516

    Article  PubMed  Google Scholar 

  112. Comeau TB, Epstein JB, Migas C (2001) Taste and smell dysfunction in patients receiving chemotherapy: a review of current knowledge. J Support Care Cancer 9:575–580

    Article  CAS  Google Scholar 

  113. Holscher T, Seibt A, Appold S, et al. (2005) Effects of radiotherapy on olfactory function. Radiother Oncol 77:157–163

    Article  PubMed  Google Scholar 

  114. Taverner D (1973) Medical management of idiopathic facial (Bell’s) palsy. Proc R Soc Med 66:554–556

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Murakami S, Mizobuchi M, Nakashiro Y, Doi T, Hato N, Yanagihara N (1996) Bell palsy and herpes simplex virus: identification of viral DNA in endoneurial fluid and muscle. Ann Intern Med 124:27–30

    Article  CAS  PubMed  Google Scholar 

  116. Landis BN, Beutner D, Frasnelli J, Huttenbrink KB, Hummel T (2005) Gustatory function in chronic inflammatory middle ear diseases. Laryngoscope 115:1124–1127

    Article  CAS  PubMed  Google Scholar 

  117. Doty RL, Tourbier I, Neff JK, et al 2015 Influences of temporal lobe epilepsy and temporal lobe resection on olfactory function. Ann Neurol, submitted

  118. Doty RL, Nsoesie MT, Chung I, et al. (2015) Taste function in early stage treated and untreated Parkinson’s disease. J Neurol 262:547–557

    Article  CAS  PubMed  Google Scholar 

  119. Sakai M, Ikeda M, Kazui H, Shigenobu K, Nishikawa T (2015) Decline of gustatory sensitivity with the progression of Alzheimer’s disease. Int Psychogeriatr 1:1–7

    Article  Google Scholar 

  120. Suto T, Meguro K, Nakatsuka M, et al. (2014) Disorders of “taste cognition” are associated with insular involvement in patients with Alzheimer’s disease and vascular dementia: “memory of food is impaired in dementia and responsible for poor diet”. Int Psychogeriatr 26:1127–1138

    Article  PubMed  Google Scholar 

  121. Petzold GC, Einhaupl KM, Valdueza JM (2003) Persistent bitter taste as an initial symptom of amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 74:687–688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Leon-Sarmiento FE, Leon-Ariza DS, Doty RL (2013) Dysfunctional chemosensation in myasthenia gravis: a systematic review. J Clin Neuromuscul Dis 15:1–6

    Article  PubMed  Google Scholar 

  123. Kabasawa C, Shimizu Y, Suzuki S, et al. (2013) Taste disorders in myasthenia gravis: a multicenter cooperative study. Eur J Neurol 20:205–207

    Article  CAS  PubMed  Google Scholar 

  124. Dahlslett SB, Goektas O, Schmidt F, Harms L, Olze H, et al. (2012) Psychophysiological and electrophysiological testing of olfactory and gustatory function in patients with multiple sclerosis. Eur Arch Otorhinolaryngol 269:1163–1169

    Article  PubMed  Google Scholar 

  125. Doty RL, Tourbier IA, Pham DL, et al. (2015) Taste dysfunction in multiple sclerosis. Neurology, submitted

  126. Ansoleaga B, Garcia-Esparcia P, Pinacho R, Haro JM, Ramos B, et al. (2015) Decrease in olfactory and taste receptor expression in the dorsolateral prefrontal cortex in chronic schizophrenia. J Psychiatr Res 60:109–116

    Article  PubMed  Google Scholar 

  127. Moberg PJ, Mcgue C, Kanes SJ, et al. (2007) Phenylthiocarbamide (PTC) perception in patients with schizophrenia and first-degree family members: relationship to clinical symptomatology and psychophysical olfactory performance. Schizophr Res 90:221–228

    Article  PubMed Central  PubMed  Google Scholar 

  128. Panayiotou H, Small SC, Hunter JH, Culpepper RM (1995) Sweet taste (dysgeusia). The first symptom of hyponatremia in small cell carcinoma of the lung. Arch Intern Med 155:1325–1328

    Article  CAS  PubMed  Google Scholar 

  129. Schiffman SS, Gatlin CA (1993) Clinical physiology of taste and smell. Ann Rev Nutr 13:405–436

  130. Doty RL, Shah M, Bromley SM (2008) Drug-induced taste disorders. Drug Saf 31:199–215

    Article  CAS  PubMed  Google Scholar 

  131. Doty RL, Treem J, Tourbier I, Mirza N (2009) A double-blind study of the influences of eszopiclone on dysgeusia and taste function. Pharmacol Biochem Behav 94:312–318

    Article  CAS  PubMed  Google Scholar 

  132. Ripamonti C, Fulfaro F (1998) Taste alterations in cancer patients. J Pain Symptom Manag 16:349–351

    Article  CAS  Google Scholar 

  133. Jensen SB, Mouridsen HT, Bergmann OJ, Reibel J, Brunner N, Nauntofte B (2008) Oral mucosal lesions, microbial changes, and taste disturbances induced by adjuvant chemotherapy in breast cancer patients. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 106:217–226

    Article  PubMed  Google Scholar 

  134. Leitzen C, Bootz F, Herberhold S, et al. (2012) Changes in taste during IM/IMRT radiotherapy for head and neck cancer patients. Strahlentherapie. Onkologie 188:184–185

    Google Scholar 

  135. Landis BN, Giger R, Dulguerov P, Hugentobler M, Hummel T, et al. (2007) Gustatory function after microlaryngoscopy. Acta Otolaryngol (Stockh) 127:1086–1090

    Article  Google Scholar 

  136. Yamashita H, Nakagawa K, Hosoi Y, et al. (2009) Umami taste dysfunction in patients receiving radiotherapy for head and neck cancer. Oral Oncol 45:e19–e23

    Article  PubMed  Google Scholar 

  137. Redda MGR, Allis S (2006) Radiotherapy-induced taste impairment. Cancer Treat Rev 32:541–547

    Article  Google Scholar 

  138. Maes A, Huygh I, Weltens C, et al. (2002) De gustibus: time scale of loss and recovery of tastes caused by radiotherapy. Radiother Oncol 63:195–201

    Article  PubMed  Google Scholar 

  139. Mossman KL, Chencharick JD, Scheer AC, et al. (1979) Radiation-induced changes in gustatory function: comparison of effects of neutron and photon irradiation. Int J Radiat Oncol Biol Phys 5:521–528

    Article  CAS  PubMed  Google Scholar 

  140. Shi HB, Masuda M, Umezaki T, et al. (2004) Irradiation impairment of umami taste in patients with head and neck cancer. Auris Nasus Larynx 31:401–406

    Article  PubMed  Google Scholar 

  141. Halyard MY, Jatoi A, Sloan JA, et al. (2007) Does zinc sulfate prevent therapy-induced taste alterations in head and neck cancer patients? Results of phase III double-blind, placebo-controlled trial from the North Central cancer treatment group (N01C4). Int J Radiat Oncol Biol Phys 67:1318–1322

    Article  CAS  PubMed  Google Scholar 

  142. Nelson GM (1998) Biology of taste buds and the clinical problem of taste loss. Anat Rec 253:70–78

    Article  CAS  PubMed  Google Scholar 

  143. Sandow PL, Hejrat-Yazdi M, Heft MW (2006) Taste loss and recovery following radiation therapy. J Dent Res 85:608–611

    Article  CAS  PubMed  Google Scholar 

  144. Lin A, Kim HM, Terrell JE, Dawson LA, Ship JA, Eisbruch A (2003) Quality of life after parotid-sparing IMRT for head-and-neck cancer: a prospective longitudinal study. Int J Radiat Oncol Biol Phys 57:61–70

    Article  PubMed  Google Scholar 

  145. Epstein JB, Emerton S, Kolbinson DA, et al. (1999) Quality of life and oral function following radiotherapy for head and neck cancer. Head Neck- 21:1–11

    Article  CAS  PubMed  Google Scholar 

  146. de Graeff A, de Leeuw JR, Ros WJ, Hordijk GJ, Blijham GH, Winnubst JA (2000) Long-term quality of life of patients with head and neck cancer. Laryngoscope 110:98–106

    Article  PubMed  Google Scholar 

  147. Oates JE, Clark JR, Read J, et al. (2007) Prospective evaluation of quality of life and nutrition before and after treatment for nasopharyngeal carcinoma. Arch Otolaryngol Head Neck Surg 133:533–540

    Article  PubMed  Google Scholar 

  148. Cooperstein E, Gilbert J, Epstein JB, et al. (2012) Vanderbilt head and neck symptom survey version 2.0: report of the development and initial testing of a subscale for assessment of oral health. Head Neck 34:797–804

    Article  PubMed  Google Scholar 

  149. Speck RM, DeMichele A, Farrar JT, et al. (2013) Taste alteration in breast cancer patients treated with taxane chemotherapy: experience, effect, and coping strategies. Support Care Cancer 21:549–555

    Article  PubMed  Google Scholar 

  150. Gill SS, Frew J, Fry A, et al. (2011) Priorities for the head and neck cancer patient, their companion and members of the multidisciplinary team and decision regret. Clin Oncol (R Coll Radiol) 23:518–524

    Article  CAS  Google Scholar 

  151. Bernstein IL, Webster MM (1980) Learned taste aversions in humans. Physiol Behav 25:363–366

    Article  CAS  PubMed  Google Scholar 

  152. Midkiff EE, Bernstein IL (1985) Targets of learned food aversions in humans. Physiol Behav 34:839–841

    Article  CAS  PubMed  Google Scholar 

  153. Bernstein IL, Webster MM, Bernstein ID (1982) Food aversions in children receiving chemotherapy for cancer. Cancer 50:2961–2963

    Article  CAS  PubMed  Google Scholar 

  154. Broberg DJ, Bernstein IL (1987) Candy as a scapegoat in the prevention of food aversions in children receiving chemotherapy. Cancer 60:2344–2347

    Article  CAS  PubMed  Google Scholar 

  155. Haverman TM, Raber-Durlacher JE, Rademacher WM, et al. (2014) Oral complications in hematopoietic stem cell recipients: the role of inflammation. Mediat Inflamm 2014:378281

    Article  CAS  Google Scholar 

  156. Epstein JB, Phillips N, Parry J, Epstein MS, Nevill T, Stevenson-Moore P (2002) Quality of life, taste, olfactory and oral function following high-dose chemotherapy and allogeneic hematopoietic cell transplantation. Bone Marrow Transplant 30:785–792

    Article  CAS  PubMed  Google Scholar 

  157. Cohen J, Laing DG, Wilkes FJ (2012) Taste and smell function in pediatric blood and marrow transplant patients. Support Care Cancer 20:3019–3023

    Article  CAS  PubMed  Google Scholar 

  158. Hull KM, Kerridge I, Schifter M (2012) Long-term oral complications of allogeneic haematopoietic SCT. Bone Marrow Transplant 47:265–270

    Article  CAS  PubMed  Google Scholar 

  159. Rodgers C, Young A, Hockenberry M, Binder B, Symes L (2010) The meaning of adolescents’ eating experiences during bone marrow transplant recovery. J Pediatr Oncol Nurs 27:65–72

    Article  PubMed Central  PubMed  Google Scholar 

  160. Watters AL, Epstein JB, Agulnik M (2011) Oral complications of targeted cancer therapies: a narrative literature review. Oral Oncol 47:441–448

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel B. Epstein.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest in review of the biology and testing of taste in oncology. Dr. Epstein and Smutzer are on the advisory board of Insys Rx that is planning development of an intervention for taste change, Dr. Smutzer is supported by an FSSMF grant from Temple University, and Dr. Doty is a shareholder in Sensonics International, a manufacturer and distributor of test of taste and smell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Epstein, J.B., Smutzer, G. & Doty, R.L. Understanding the impact of taste changes in oncology care. Support Care Cancer 24, 1917–1931 (2016). https://doi.org/10.1007/s00520-016-3083-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00520-016-3083-8

Keywords

Navigation