Skip to main content
Log in

Thrombozytopathie und Blutungskomplikationen bei Urämie

Platelet dysfunction in Uremia

  • Übersicht
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

Summary

Bleeding diathesis and thrombotic tendencies are characteristic findings in patients with end-stage renal disease. The pathogenesis of uremic bleeding tendency is related to multiple dysfunctions of the platelets. The platelet numbers may be reduced slightly, while platelet turnover is increased. The reduced adhesion of pltelets to the vascular subendothelial wall is due to reduction of GPIb and altered conformational changes of GPIIb/IIIa receptors. Alterations of platelet adhesion and aggregation are caused by uremic toxins, increased platelet production of NO, PGI2, calcium and cAMP as well as renal anemia. Correction of uremic bleeding is caused by treatment of renal anemia with recombinant human erythropoietin or darbepoetin α, adequate dialysis, desmopressin, cryoprecipitate, tranexamic acid, or conjugated estrogens. Thrombotic complications in uremia are caused by increased platelet aggregation and hypercoagulability. Erythrocyte-platelet-aggregates, leukocyte-platelet-aggregates and platelet microparticles are found in higher percentage in uremic patients as compared to healthy individuals. The increased expression of platelet phosphatidylserine initiates phagocytosis and coagulation. Therapy with antiplatelet drugs does not reduce vascular access thrombosis but increases bleeding complications in endstage renal disease patients. Heparin-induced thrombocytopenia (HIT type II) may develop in 0–12 % of hemodialysis patients. HIT antibody positive uremic patients mostly develop only mild thrombocytopenia and only very few thrombotic complications. Substitution of heparin by hirudin, danaparoid or regional citrate anticoagulation should be decided based on each single case.

Zusammenfassung

Hämorrhagische Diathese und Thromboseneigung sind charakteristische Befunde bei Patienten mit terminaler Niereninsuffizienz. Die Pathogenese der Blutungsneigung bei Urämie beruht auf multiplen Funktionsstörungen der Thrombozyten. Die Zahl der Thrombozyten kann bei Urämie leicht erniedrigt sein, der Thrombozytenturnover ist erhöht. Die verminderte Adhärenz von Thrombozyten an das Subendothel der Gefäße beruht auf einer Reduktion bzw. veränderten Konformation der GPIb- und GPIIb/IIIa-Rezeptoren. Störungen der Adhärenz und Aggregation der Thrombozyten sind bedingt durch Urämietoxine, die vermehrte thrombozytäre Produktion von NO, PGI2, Calcium und cAMP sowiedurch die renale Anämie. Eine Korrektur der urämischen Blutung lässt sich durch die Therapie der renalen Anämie mit rekombinantem humanen Erythropoietin oder Darbepoetin α, eine adäquate Dialysedosis sowie durch die Gabe von Desmopressin, Kryopräzipitat, Tranexaminsäure oder konjugierte Östrogenen erzielen. Die Thromboseneigung bei Urämie beruht auf einer gesteigerten Plättchenaggregation und Hyperkoagulabilität. Erythrozyten-Thrombozyten-Aggregate, Leukozyten-Thrombozyten-Aggregate und Plättchenmikropartikel zirkulieren bei Urämie in höherem Prozentsatz als beim Nierengesunden. Die vermehrte thrombozytäre Expression von Phosphatidylserin initiiert Phagozytose und Gerinnung. Eine Therapie mit Thrombozytenaggregationshemmern führt bei Patienten mit terminaler Niereninsuffizienz zu keiner Reduktion von Shuntthrombosen, vermehrt jedoch zu Blutungskomplikationen. Hämodialysepatienten können in 0–12 % der Fälle eine Heparin-induzierte Thrombozytopenie (HIT-II) entwickeln, wobei HIT-Antikörper-positive urämische Patienten meist nur milde Thrombozytopenien und nur selten thrombotische Komplikationen erleiden. Ein Ersatz von Heparin durch Hirudin, Danaparoid oder regionale Zitratantikoagulation muss anhand des Einzelfalls entschieden werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Morgagni GB (1764) Opera Omnia. Typographia Remondiniana, Venezia

    Google Scholar 

  • Boccardo P, Remuzzi G, Galbusera M (2004) Platelet dysfunction in renal failure. Semin Thromb Hemost 30: 579–589

    Article  CAS  PubMed  Google Scholar 

  • Hakim RM, Schafer AI (1985) Hemodialysis-associated platelet activation and thrombocytopenia. Am J Med 78: 575–580

    Article  CAS  PubMed  Google Scholar 

  • O'Shea SI, Ortel TL, Kovalik EC (2003) Alternative methods of anticoagulation for dialysis-dependent patients with heparin-induced thrombocytopenia. Semin Dial 16: 61–67

    Article  PubMed  Google Scholar 

  • Himmelfarb J, Holbrook D, McMonagle E, Ault K (1997) Increased reticulated platelets in dialysis patients. Kidney Int 51: 834–839

    Article  CAS  PubMed  Google Scholar 

  • Bonomini M, Sirolli V, Reale M, Arduini A (2001) Involvement of phosphatidylserine exposure in the recognition and phagocytosis of uremic erythrocytes. Am J Kidney Dis 37: 807–814

    Article  CAS  PubMed  Google Scholar 

  • Fox JE (1996) Platelet activation: new aspects. Haemostasis 26 [Suppl 4]: 102–131

    CAS  PubMed  Google Scholar 

  • Shattil SJ, Kashiwagi H, Pampori N (1998) Integrin signaling: the platelet paradigm. Blood 91: 2645–2657

    CAS  PubMed  Google Scholar 

  • Heemskerk JW, Vuist WM, Feijge MA, Reutelingsperger CP, Lindhout T (1997) Collagen but not fibrinogen surfaces induce bleb formation, exposure of phosphatidylserine, and procoagulant activity of adherent platelets: evidence for regulation by protein tyrosine kinase-dependent Ca2+ responses. Blood 90: 2615–2625

    CAS  PubMed  Google Scholar 

  • Schroit AJ, Madsen JW, Tanaka Y (1985) In vivo recognition and clearance of red blood cells containing phosphatidylserine in their plasma membranes. J Biol Chem 260: 5131–5138

    CAS  PubMed  Google Scholar 

  • Fadok VA, Savill JS, Haslett C, Bratton DL, Doherty DE, Campbell PA, et al (1992) Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells. J Immunol 149: 4029–4035

    CAS  PubMed  Google Scholar 

  • Fadok VA, Bratton DL, Frasch SC, Warner ML, Henson PM (1998) The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ 5: 551–562

    Article  CAS  PubMed  Google Scholar 

  • Fritsche HM, von Sommoggy S, Vogel GE, Haas-Denk S (1977) Thrombozyten bei akut blutungsgefährdeten Risikopatienten unter Hämodialyse mit Minimalheparinisierung. Med Welt 28: 906–911

    CAS  PubMed  Google Scholar 

  • Vonend E, Bottcher D, Knodler U, Heinze V (1974) Changes of plasma coagulatiion and blood platelet function in patients with kidney insufficiency and their modification through homodialysis, kidney transplantation and acetylsalicylic acid. Med Welt 25: 91–98

    CAS  PubMed  Google Scholar 

  • Castaldi PA, Rozenberg MC, Stewart JH (1966) The bleeding disorder of uraemia. A qualitative platelet defect. Lancet 2: 66–69

    Article  CAS  PubMed  Google Scholar 

  • Stewart JH, Castaldi PA (1967) Uraemic bleeding: a reversible platelet defect corrected by dialysis. Q J Med 36: 409–423

    CAS  PubMed  Google Scholar 

  • Eknoyan G, Wacksman SJ, Glueck HI, Will JJ (1969) Platelet function in renal failure. N Engl J Med 280: 677–681

    Article  CAS  PubMed  Google Scholar 

  • Horowitz HI (1970) Uremic toxins and platelet function. Arch Intern Med 126: 823–826

    Article  CAS  PubMed  Google Scholar 

  • Losowsky MS, Walls WD (1971) Abnormalities of haemostasis in renal failure. JR Coll Physicians Lond 5: 148–156

    CAS  Google Scholar 

  • Remuzzi G (1988) Bleeding in renal failure. Lancet 1: 1205–1208

    Article  CAS  PubMed  Google Scholar 

  • Castillo R, Lozano T, Escolar G, Revert L, Lopez J, Ordinas A (1986) Defective platelet adhesion on vessel subendothelium in uremic patients. Blood 68: 337–342

    CAS  PubMed  Google Scholar 

  • Steiner RW, Coggins C, Carvalho AC (1979) Bleeding time in uremia: a useful test to assess clinical bleeding. Am J Hematol 7: 107–117

    Article  CAS  PubMed  Google Scholar 

  • Coutre S, Leung L (1995) Novel antithrombotic therapeutics targeted against platelet glycoprotein IIb/IIIa. Annu Rev Med 46: 257–265

    Article  CAS  PubMed  Google Scholar 

  • Kroll MH, Harris TS, Moake JL, Handin RI, Schafer AI (1991) von Willebrand factor binding to platelet GpIb initiates signals for platelet activation. J Clin Invest 88: 1568–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calvete JJ (1994) Clues for understanding the structure and function of a prototypic human integrin: the platelet glycoprotein IIb/IIIa complex. Thromb Haemost 72: 1–15

    CAS  PubMed  Google Scholar 

  • Bray PF (1994) Inherited diseases of platelet glycoproteins: considerations for rapid molecular characterization. Thromb Haemost 72: 492–502

    CAS  PubMed  Google Scholar 

  • Escolar G, Diaz-Ricart M, Cases A (2005) Uremic platelet dysfunction: past and present. Curr Hematol Rep 4: 359–367

    CAS  PubMed  Google Scholar 

  • Sloand EM, Sloand JA, Prodouz K, Klein HG, Yu MW, Harvath L, Fricke W (1991) Reduction of platelet glycoprotein Ib in uraemia. Br J Haematol 77: 375–381

    Article  CAS  PubMed  Google Scholar 

  • Mezzano D, Tagle R, Panes O, Perez M, Downey P, Munoz B, Aranda E, Barja P, Thambo S, Gonzalez F, Mezzano S, Pereira J (1996) Hemostatic disorder of uremia: the platelet defect, main determinant of the prolonged bleeding time, is correlated with indices of activation of coagulation and fibrinolysis. Thromb Haemost 76: 312–321

    CAS  PubMed  Google Scholar 

  • Walkowiak B, Pawlowska Z, Michalak E, Cierniewski CS (1994) Expression of fibrinogen receptors on platelets of uremic patients is correlated with the content of GPIIb and plasma level of creatinine. Thromb Haemost 71: 164–168

    CAS  PubMed  Google Scholar 

  • Zwaginga JJ, Ijsseldijk MJ, Beeser-Visser N, de Groot PG, Vos J, Sixma JJ (1990) High von Willebrand factor concentration compensates a relative adhesion defect in uremic blood. Blood 75: 1498–1508

    CAS  PubMed  Google Scholar 

  • Deykin D (1983) Uremic bleeding. Kidney Int 24: 698–705

    Article  CAS  PubMed  Google Scholar 

  • Casonato A, Pontara E, Vertolli UP, Steffan A, Durante C, De Marco L, Sartorello F, Girolami A (2001) Plasma and platelet von Willebrand factor abnormalities in patients with uremia: lack of correlation with uremic bleeding. Clin Appl Thromb Hemost 7: 81–86

    Article  CAS  PubMed  Google Scholar 

  • Gralnick HR, McKeown LP, Williams SB, Shafer BC, Pierce L (1988) Plasma and platelet von Willebrand factor defects in uremia. Am J Med 85: 806–810

    Article  CAS  PubMed  Google Scholar 

  • Gawaz MP, Loftus JC, Bajt ML, Frojmovic MM, Plow EF, Ginsberg MH (1991) Ligand bridging mediates integrin alpha IIb beta 3 (platelet GPIIB-IIIA) dependent homotypic and heterotypic cell-cell interactions. J Clin Invest 88: 1128–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gawaz MP Ward RA (1991) Effects of hemodialysis on platelet-derived thrombospondin. Kidney Int 40: 257–265

    Article  CAS  PubMed  Google Scholar 

  • Himmelfarb J, Nelson S, McMonagle E, Holbrook D, Benoit SE, Michelson AD, Ault K (1998) Elevated plasma glycocalicin levels and decreased ristocetin-induced platelet agglutination in hemodialysis patients. Am J Kidney Dis 32: 132–138

    Article  CAS  PubMed  Google Scholar 

  • Moal V, Brunet P, Dou L, Morange S, Sampol J, Berland Y (2003) Impaired expression of glycoproteins on resting and stimulated platelets in uraemic patients. Nephrol Dial Transplant 18: 1834–1841

    Article  CAS  PubMed  Google Scholar 

  • Benigni A, Boccardo P, Galbusera M, Monteagudo J, De Marco L, Remuzzi G, Ruggeri ZM (1993) Reversible activation defect of the platelet glycoprotein IIb-IIIa complex in patients with uremia. Am J Kidney Dis 22: 668–676

    Article  CAS  PubMed  Google Scholar 

  • Gawaz MP, Dobos G, Spath M, Schollmeyer P, Gurland HJ, Mujais SK (1994) Impaired function of platelet membrane glycoprotein IIb-IIIa in end-stage renal disease. J Am Soc Nephrol 5: 36–46

    CAS  PubMed  Google Scholar 

  • Sohal AS, Gangji AS, Crowther MA, Treleaven D (2005) Uremic bleeding: Pathophysiology and clinical risk factors. Thromb Res 30 [Epub ahead of print]

  • Lindsay RM, Moorthy AV, Koens F, Linton AL (1975) Platelet function in dialyzed and non-dialyzed patients with chronic renal failure. Clin Nephrol 4: 52–57

    CAS  PubMed  Google Scholar 

  • Lindsay RM, Friesen M, Koens F, Linton AL, Oreopoulos D, de Veber G (1976) Platelet function in patients on long term peritoneal dialysis. Clin Nephrol 6: 335–339

    CAS  PubMed  Google Scholar 

  • Lindsay RM, Friesen M, Aronstam A, Andrus F, Clark WF, Linton AL (1978) Improvement of platelet function by increased frequency of hemodialysis. Clin Nephrol 10: 67–70

    CAS  PubMed  Google Scholar 

  • Jorgensen KA, Ingeberg S (1979) Platelets and platelet function in patients with chronic uremia on maintenance hemodialysis. Nephron 23: 233–236

    Article  CAS  PubMed  Google Scholar 

  • Pietrzak I, Komarnicki M, Zaremba-Drobnik D (2001) Platelet aggregation and prostaglandin metabolism inuremic patients. Am J Kidney Dis 38: S111–114

    Article  CAS  PubMed  Google Scholar 

  • Vonend E, Böttcher D, Fischer J, Heinze V (1975) Thrombozytenfunktionsstörungen bei Dauerdialysepatienten. Hemmung der Thrombozytenaggregation als Maß für die Wirkung von Urämietoxinen. Med Welt 43: 1965–1970

    Google Scholar 

  • Rabiner SF Hrodek O (1968) Platelet factor 3 in normal subjects and patients with renal failure. J Clin Invest 47: 901–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsay RM, Dennis BN, Bergstrom JC, Jonsson C, Furst P (1981) Platelet function as an assay for uremic toxins. Artif Organs 4: 82–89

    PubMed  Google Scholar 

  • Remuzzi G, Benigni A, Dodesini P, Schieppati A, Livio M, De Gaetano G, et al (1983) Reduced platelet thromboxane formation in uremia. Evidence for a functional cyclooxygenase defect. J Clin Invest 71: 762–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith MC, Dunn MJ (1981) Impaired platelet thromboxane production in renal failure. Nephron 29: 133–137

    Article  CAS  PubMed  Google Scholar 

  • Albertazzi A, Di Paolo B, Di Marco T, Palmieri P, Evangelista M, Spisni C, et al (1985) Evoked potentials in uremia: basal and follow-up data. Life Support Syst 3: 1–5

    PubMed  Google Scholar 

  • Macconi D, Vigano G, Bisogno G, Galbusera M, Orisio S, Remuzzi G, et al (1992) Defective platelet aggregation in response to platelet-activating factor in uremia associated with low platelet thromboxane A2 generation. Am J Kidney Dis 19: 318–325

    Article  CAS  PubMed  Google Scholar 

  • Sloand JA, Sloand EM (1997) Studies on platelet membrane glycoproteins and platelet function during hemodialysis. J Am Soc Nephrol 8: 799–803

    CAS  PubMed  Google Scholar 

  • Remuzzi G, Cavenaghi AE, Mecca G, Donati MB, de Gaetano G (1977) Prostacyclin-like activity and bleeding in renal failure. Lancet 2: 1195–1197

    Article  CAS  PubMed  Google Scholar 

  • Kyrle PA, Stockenhuber F, Brenner B, Gossinger H, Korninger C, Pabinger I, Sunder-Plassmann G, Balcke P, Lechner K (1988) Evidence for an increased generation of prostacyclin in the microvasculature and an impairment of the platelet alpha-granule release in chronic renal failure. Thromb Haemost 60: 205–208

    CAS  PubMed  Google Scholar 

  • Defreyn G, Dauden MV, Machin SJ, Vermylen J (1980) A plasma factor in uraemia which stimulates prostacyclin release from cultured endothelial cells. Thromb Res 19: 695–699

    Article  CAS  PubMed  Google Scholar 

  • Radomski MW, Palmer RM, Moncada S (1990) An Larginine/nitric oxide pathway present in human plateletsregulates aggregation. Proc Natl Acad Sci USA 87: 5193–5197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thuraisingham RC, Cramp HA, McMahon AC, et al (1997) Increased superperoxide and nitric oxide production results in peroxynitrite formation in uremic vasculature. J Am Soc Nephrol 8: 340 A

    Google Scholar 

  • Neri I, Marietta M, Piccinini F, Volpe A, Facchinetti F (1998) The L-arginine-nitric oxide system regulates platelet aggregation in pregnancy. J Soc Gynecol Investig 5: 192–196

    Article  CAS  PubMed  Google Scholar 

  • Noris M, Benigni A, Boccardo P, Aiello S, Gaspari F, Todeschini M, Figliuzzi M, Remuzzi G (1993) Enhanced nitric oxide synthesis in uremia: implications for platelet dysfunction and dialysis hypotension. Kidney Int 44: 445–450

    Article  CAS  PubMed  Google Scholar 

  • Noris M, Remuzzi G (1999) Uremic bleeding: closing the circle after 30 years of controversies? Blood 94: 2569–2574

    CAS  PubMed  Google Scholar 

  • Brunini TM, Yaqoob MM, Novaes Malagris LE, Ellory JC, Mann GE, Mendes Ribeiro AC (2003) Increased nitric oxide synthesis in uraemic platelets is dependent on L-arginine transport via system y(+)L. Pflügers Arch 445: 547–550

    Article  CAS  PubMed  Google Scholar 

  • Thuraisingham RC, Raine AE (1999) Maintenance of normal agonist-induced endothelium-dependent relaxation in uraemic and hypertensive resistance vessels. Nephrol Dial Transplant 14: 70–75

    Article  CAS  PubMed  Google Scholar 

  • Descamps-Latscha B, Herbelin A, Nguyen AT, Roux-Lombard P, Zingraff J, Moynot A, Verger C, Dahmane D, de Groote D, Jungers P, et al (1995) Balance between IL-1 beta, TNF-alpha, and their specific inhibitors in chronic renal failure and maintenance dialysis. Relationships with activation markers of T cells, B cells, and monocytes. J Immunol 154: 882–892

    CAS  PubMed  Google Scholar 

  • Pereira BJ, Dinarello CA (1994) Production of cytokines and cytokine inhibitory proteins in patients on dialysis. Nephrol Dial Transplant 9: 60–71

    PubMed  Google Scholar 

  • Kenet G, Freedman J, Shenkman B, Regina E, Brok-Simoni F, Holzman F, Vavva F, Brand N, Michelson A, Trolliet M, Loscalzo J, Inbal A (1997) Plasma glutathione peroxidase deficiency and platelet insensitivity to nitric oxide in children with familial stroke. Arterioscler Thromb Vasc Biol 19: 2017–2023

    Article  Google Scholar 

  • Remuzzi G, Perico N, Zoja C, Corna D, Macconi D, Vigano G (1990) Role of endothelium-derived nitric oxide in the bleeding tendency of uremia. J Clin Invest 86: 1768–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Silva CD, Brunini TM, Reis PF, Moss MB, Santos SF, Roberts NB, Ellory JC, Mann GE, Mendes-Ribeiro AC (2005) Effects of nutritional status on the l-argininenitric oxide pathway in platelets from hemodialysis patients. Kidney Int 68: 2173–2179

    Article  PubMed  Google Scholar 

  • Brunini TM, Roberts NB, Yaqoob MM, Reis PF, Ellory JC, Mann GE, Mendes-Ribeiro AC (2002) Activation of L-arginine transport in peripheral blood mononuclear cells in chronic renal failure. Pflügers Arch 445: 147–151

    Article  CAS  PubMed  Google Scholar 

  • Horowitz HI, Stein IM, Cohen BD, White JG (1970) Further studies on the platelet-inhibitory effect of guanidinosuccinic acid and its role in uremic bleeding. Am J Med 49: 336–345

    Article  CAS  PubMed  Google Scholar 

  • Hogman M, Frostell C, Arnberg H, Hedenstierna G (1993) Bleeding time prolongation and NO inhalation. Lancet 341: 1664–1665

    Article  CAS  PubMed  Google Scholar 

  • Gries A, Bode C, Peter K, Herr A, Bohrer H, Motsch J, Martin E (1998) Inhaled nitric oxide inhibits human platelet aggregation, P-selectin expression, and fibrinogen binding in vitro and in vivo. Circulation 97: 1481–1487

    Article  CAS  PubMed  Google Scholar 

  • Aiello S, Noris M, Todeschini M, Zappella S, Foglieni C, Benigni A, et al (1997) Renal and systemic nitric oxide synthesis in rats with renal mass reduction. Kidney Int 52: 171–181

    Article  CAS  PubMed  Google Scholar 

  • Madore F, Prud homme L, Austin JS, Blaise G, Francoeur M, Leveille M, et al (1997) Impact of nitric oxide on blood pressure in hemodialysis patients. Am J Kidney Dis 30: 665–671

    Article  CAS  PubMed  Google Scholar 

  • Yokokawa K, Kohno M, Yoshikawa J (1996) Nitric oxide mediates the cardiovascular instability of haemodialysis patients. Curr Opin Nephrol Hypertens 5: 359–363

    Article  CAS  PubMed  Google Scholar 

  • Yokokawa K, Mankus R, Saklayen MG, Kohno M, Yasunari K, Minami M, et al (1995) Increased nitric oxide production in patients with hypotension during hemodialysis. Ann Intern Med 123: 35–37

    Article  CAS  PubMed  Google Scholar 

  • Martensson L, Hegbrant J, Thysell H (1997) Generation of nitrate during dialysis as a measure of nitric oxide synthesis. Artif Organs 21: 163–167

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto A, Hirata Y, Kakoki M, Nagata D, Momomura S, Sugimoto T, et al (1999) Increased excretion of nitric oxide in exhaled air of patients with chronic renal failure. Clin Sci (Lond) 96: 67–74

    Article  CAS  Google Scholar 

  • Yokokawa K, Tahara H, Kohno M, Mandal AK, Yanagisawa M, Takeda T (1993) Heparin regulates endothelin production through endothelium-derived nitric oxide in human endothelial cells. J Clin Invest 92: 2080–2085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon DI, Stamler JS, Loh E, Loscalzo J, Francis SA, Creager MA (1995) Effect of nitric oxide synthase inhibition on bleeding time in humans. J Cardiovasc Pharmacol 26: 339–342

    Article  CAS  PubMed  Google Scholar 

  • Fliser D (2005) Asymmetric dimethylarginine (ADMA): the silent transition from an 'uraemic toxin' to a global cardiovascular risk molecule. Eur J Clin Invest 35: 71–79

    Article  CAS  PubMed  Google Scholar 

  • Rink TJ (1988) Cytosolic calcium in platelet activation. Experientia 44: 97–100

    Article  CAS  PubMed  Google Scholar 

  • Ware JA, Johnson PC, Smith M, Salzman EW (1986) Effect of common agonists on cytoplasmic ionized calcium concentration in platelets. Measurement with 2-methyl-6-methoxy 8-nitroquinoline (quin2) and aequorin. J Clin Invest 77: 878–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gura V, Creter D, Levi J (1982) Elevated thrombocyte calcium content in uremia and its correction by 1 alpha (OH) vitamin D treatment. Nephron 30: 237–239

    Article  CAS  PubMed  Google Scholar 

  • Moosa A, Greaves M, Brown CB, MacNeil S (1990) Elevated platelet-free calcium in uraemia. Br J Haematol 74: 300–305

    Article  CAS  PubMed  Google Scholar 

  • Van Geet C, Van Damme-Lombaerts R, Vanrusselt M, de Mol A, Proesmans W, Vermylen J (1990) Recombinant human erythropoietin increases blood pressure, platelet aggregability and platelet free calcium mobilisation in uraemic children: a possible link? Thromb Haemost 64: 7–10

    CAS  PubMed  Google Scholar 

  • Ware JA, Clark BA, Smith M, Salzman EW (1989) Abnormalities of cytoplasmic Ca2+ in platelets from patients with uremia. Blood 73: 172–176

    CAS  PubMed  Google Scholar 

  • Zhou XJ, Vaziri ND (2002) Defective calcium signalling in uraemic platelets and its amelioration with long-term erythropoietin therapy. Nephrol Dial Transplant 17: 992–997

    Article  CAS  PubMed  Google Scholar 

  • Bogin E, Massry SG, Harary I (1981) Effect of parathyroid hormone on rat heart cells. J Clin Invest 67: 1215–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlachoyannis J, Schoeppe W (1982) Adenylate cyclase activity and cAMP content of human platelets in uraemia. Eur J Clin Invest 12: 379–381

    Article  CAS  PubMed  Google Scholar 

  • Yamanishi J, Kawahara Y, Fukuzaki H (1983) Effect of cyclic AMP on cytoplasmic free calcium in human platelets stimulated by thrombin: direct measurement with quin2. Thromb Res 32: 183–188

    Article  CAS  PubMed  Google Scholar 

  • Leithner C, Kovarik J, Sinzinger H, Woloszczuk W (1984) Parathyroid hormone does not inhibit platelet aggregation. Lancet 1: 367–368

    Article  CAS  PubMed  Google Scholar 

  • Schiffl H (1990) Correlation of blood pressure in endstage renal disease with platelet cytosolic free-calcium concentration. Klin Wochenschr 68: 718–722

    Article  CAS  PubMed  Google Scholar 

  • Schneider W, Szanto T, Truat G (1974) Cyclic adenosine monophosphate and renal failure (author's transl). Klin Wochenschr 52: 1175–1176

    Article  CAS  PubMed  Google Scholar 

  • Haslam RJ, Rosson GM (1975) Effects of adenosine on levels of adenosine cyclic 3′,5′-monophosphate in human blood platelets in relation to adenosine incorporation and platelet aggregation. Mol Pharmacol 11: 528–544

    CAS  PubMed  Google Scholar 

  • Colwell JA, Halushka PV, Sarji K, Levine J, Sagel J, Nair RM (1976) Altered platelet function in diabetes mellitus. Diabetes 25: 826–831

    CAS  PubMed  Google Scholar 

  • Goldberg ML, Bohannon NV, Brooks RM, Tsalikian E, Lorenzi M, Forsham PH (1977) Plasma cyclic nucleotide levels in juvenile-onset diabetes. Diabetes 26: 936–943

    Article  CAS  PubMed  Google Scholar 

  • Turitto VT, Baumgartner HR (1979) Platelet interaction with subendothelium in flowing rabbit blood: effect of blood shear rate. Microvasc Res 17: 38–54

    Article  CAS  PubMed  Google Scholar 

  • Blasberg P, Wurzinger LJ, Schmidt-Schönbein H (1983) Microheology of thrombocyte deposition: effect of stimulation, flow direction, and red cells. In: Schettler G, Nerem RM, Schmidt-Schönbein H, Mörl H, Diehm C (eds) Fluids dynamics as a localizing factor for artherosclerosis. Springer, Berlin Heidelberg New York, pp 103–105

    Chapter  Google Scholar 

  • Vigano G, Benigni A, Mendogni D, Mingardi G, Mecca G, Remuzzi G (1991) Recombinant human erythropoietin to correct uremic bleeding. Am J Kidney Dis 18: 44–49

    Article  CAS  PubMed  Google Scholar 

  • Hellem AJ, Borchgrevink CF, Ames SB (1961) The role of red cells in haemostasis: the relation between haematocrit, bleeding time and platelet adhesiveness. Br J Haematol 7: 42–50

    Article  CAS  PubMed  Google Scholar 

  • Gaarder A, Jonsen J, Laland S, Hellem A, Owren PA (1961) Adenosine diphosphate in red cells as a factor in the adhesiveness of human blood platelets. Nature 192: 531–532

    Article  CAS  PubMed  Google Scholar 

  • Born GV (1962) Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 194: 927–929

    Article  CAS  PubMed  Google Scholar 

  • Born GV, Wehmeier A (1979) Inhibition of platelet thrombus formation by chlorpromazine acting to diminish haemolysis. Nature 282: 212–213

    Article  CAS  PubMed  Google Scholar 

  • Maurin N, Fitzner S, Fritz H, Gladziwa U, Hagel J, Stefanidis I (1995) Influence of recombinant human erythropoietin on hematological and hemostatic parameters with special reference to microhemolysis. Clin Nephrol 43: 196–200

    CAS  PubMed  Google Scholar 

  • Clyne N, Lins LE, Egberg N (1995) Long-term effects of erythropoietin treatment on the coagulation system during standardized hemodialysis. Clin Nephrol 43: 260–267

    CAS  PubMed  Google Scholar 

  • Macdougall IC, Davies ME, Hallett I, Cochlin DL, Hutton RD, Coles GA, et al (1991) Coagulation studies and fistula blood flow during erythropoietin therapy in haemodialysis patients. Nephrol Dial Transplant 6: 862–867

    Article  CAS  PubMed  Google Scholar 

  • Wirtz JJ, van Esser JW, Hamulyak K, Leunissen KM, van Hooff JP (1992) The effects of recombinant human erythropoietin on hemostasis and fibrinolysis in hemodialysis patients. Clin Nephrol 38: 277–282

    CAS  PubMed  Google Scholar 

  • Lins LE, Hedenborg G, Jacobson SH, Samuelson K, Tedner B, Zetterholm UB, et al (1992) Blood pressure reduction during hemodialysis correlates to intradialytic changes in plasma volume. Clin Nephrol 37: 308–313

    CAS  PubMed  Google Scholar 

  • McDonald TP, Cottrell MB, Clift RE, Cullen WC, Lin FK (1987) High doses of recombinant erythropoietin stimulate platelet production in mice. Exp Hematol 15: 719–721

    CAS  PubMed  Google Scholar 

  • Berridge MV, Fraser JK, Carter JM, Lin FK (1988) Effects of recombinant human erythropoietin on megakaryocytes and on platelet production in the rat. Blood 72: 970–977

    CAS  PubMed  Google Scholar 

  • Eschbach JW, Abdulhadi MH, Browne JK, Delano BG, Downing MR, Egrie JC, et al (1989) Recombinant human erythropoietin in anemic patients with end-stage renal disease. Results of a phase III multicenter clinical trial. Ann Intern Med 111: 992–1000

    Article  CAS  PubMed  Google Scholar 

  • van Geet C, Hauglustaine D, Verresen L, Vanrusselt M, Vermylen J (1989) Haemostatic effects of recombinant human erythropoietin in chronic haemodialysis patients. Thromb Haemost 61: 117–121

    CAS  PubMed  Google Scholar 

  • Taylor JE, Henderson IS, Stewart WK, Belch JJ (1991) Erythropoietin and spontaneous platelet aggregation in haemodialysis patients. Lancet 338: 1361–1362

    Article  CAS  PubMed  Google Scholar 

  • Gordge MP, Leaker B, Patel A, Oviasu E, Cameron JS, Neild GH (1990) Recombinant human erythropoietin shortens the uraemic bleeding time without causing intravascular haemostatic activation. Thromb Res 57: 171–182

    Article  CAS  PubMed  Google Scholar 

  • Akizawa T, Kinugasa E, Kitaoka T, Koshikawa S (1991) Effects of recombinant human erythropoietin and correction of anemia on platelet function in hemodialysis patients. Nephron 58: 400–406

    Article  CAS  PubMed  Google Scholar 

  • Cases A, Escolar G, Reverter JC, Ordinas A, Lopez-Pedret J, Revert L, et al (1992) Recombinant human erythropoietin treatment improves platelet function inuremic patients. Kidney Int 42: 668–672

    Article  CAS  PubMed  Google Scholar 

  • Kaupke CJ, Butler GC, Vaziri ND (1993) Effect of recombinant human erythropoietin on platelet production in dialysis patients. J Am Soc Nephrol 3: 1672–1679

    CAS  PubMed  Google Scholar 

  • Papayannopoulou T, Brice M, Farrer D, Kaushansky K (1996) Insights into the cellular mechanisms of erythropoietin-thrombopoietin synergy. Exp Hematol 24: 660–669

    CAS  PubMed  Google Scholar 

  • Zwaginga JJ, Ijsseldijk MJ, de Groot PG, Kooistra M, Vos J, van Es A, et al (1991) Treatment of uremic anemia with recombinant erythropoietin also reduces the defects in platelet adhesion and aggregation caused by uremic plasma. Thromb Haemost 66: 638–647

    CAS  PubMed  Google Scholar 

  • Diaz-Ricart M, Etebanell E, Cases A, Lopez-Pedret J, Castillo R, Ordinas A, et al (1999) Erythropoietin improves signaling through tyrosine phosphorylation in platelets from uremic patients. Thromb Haemost 82: 1312–1317

    CAS  PubMed  Google Scholar 

  • Moia M, Mannucci PM, Vizzotto L, Casati S, Cattaneo M, Ponticelli C (1987) Improvement in the haemostatic defect of uraemia after treatment with recombinant human erythropoietin. Lancet 2: 1227–1229

    Article  CAS  PubMed  Google Scholar 

  • Livio M, Gotti E, Marchesi D, Mecca G, Remuzzi G, de Gaetano G (1982) Uraemic bleeding: role of anaemia and beneficial effect of red cell transfusions. Lancet 2: 1013–1015

    Article  CAS  PubMed  Google Scholar 

  • Fernandez F, Goudable C, Sie P, Ton-That H, Durand D, Suc JM, et al (1985) Low haematocrit and prolonged bleeding time in uraemic patients: effect of red cell transfusions. Br J Haematol 59: 139–148

    Article  CAS  PubMed  Google Scholar 

  • Tsukada J, Misago M, Kikuchi M, Sato T, Ogawa R, Oda S, et al (1990) The effect of high doses of recombinant human erythropoietin on megakaryocytopoiesis and platelet production in splenectomized mice. Br J Haematol 76: 260–268

    Article  CAS  PubMed  Google Scholar 

  • Homoncik M, Jilma-Stohlawetz P, Schmid M, Ferlitsch A, Peck-Radosavljevic M (2004) Erythropoietin increases platelet reactivity and platelet counts in patients with alcoholic liver cirrhosis: a randomized, double-blind, placebo-controlled study. Aliment Pharmacol Ther 20: 437–443

    Article  CAS  PubMed  Google Scholar 

  • Zwaginga JJ, de Groot PG, Kooistra MP, van Es A, Koomans HA, Struyvenberg A, et al (1991) Recombinant human erythropoietin improves, independent of its effects on hematokrit, platelet adherence in flowing blood of uremic patients. Thromb Haemost 65: 1112

    Google Scholar 

  • Sharpe PC, Desai ZR, Morris TC (1994) Increase in mean platelet volume in patients with chronic renal failure treated with erythropoietin. J Clin Pathol 47: 159–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakubowski JA, Thompson CB, Vaillancourt R, Valeri CR, Deykin D (1983) Arachidonic acid metabolism by platelets of differing size. Br J Haematol 53: 503–511

    Article  CAS  PubMed  Google Scholar 

  • Martin JF, Trowbridge EA, Salmon G, Plumb J (1983) The biological significance of platelet volume: its relationship to bleeding time, platelet thromboxane B2 production and megakaryocyte nuclear DNA concentration. Thromb Res 32: 443–460

    Article  CAS  PubMed  Google Scholar 

  • Martin JF, Bath PM, Burr ML (1991) Influence of platelet size on outcome after myocardial infarction. Lancet 338: 1409–1411

    Article  CAS  PubMed  Google Scholar 

  • Tassies D, Reverter JC, Cases A, Calls J, Escolar G, Ordinas A (1998) Effect of recombinant human erythropoietin treatment on circulating reticulated platelets in uremic patients: association with early improvement in platelet function. Am J Hematol 59: 105–109

    Article  CAS  PubMed  Google Scholar 

  • Malyszko J, Suchowierska E, Malyszko JS, Mysliwiec M (2002) A comprehensive study on hemostasis in CAPD patients treated with erythropoietin. Perit Dial Int 22: 582–592

    CAS  PubMed  Google Scholar 

  • Gordge MP, Patel A, Faint RW, Rylance PB, Neild GH (1990) Blood hyperviscosity and its relationship to progressive renal failure in patients with diabetic nephropathy. Diabet Med 7: 880–886

    Article  CAS  PubMed  Google Scholar 

  • Raine AE (1988) Hypertension, blood viscosity, and cardiovascular morbidity in renal failure: implications of erythropoietin therapy. Lancet 1: 97–100

    Article  CAS  PubMed  Google Scholar 

  • Baskin S, Lasker N (1990) Erythropoietin-associated hypertension. N Engl J Med 323: 999–1000

    Article  CAS  PubMed  Google Scholar 

  • Heidenreich S, Rahn KH, Zidek W (1991) Direct vasopressor effect of recombinant human erythropoietin on renal resistance vessels. Kidney Int 39: 259–265

    Article  CAS  PubMed  Google Scholar 

  • Singbartl G (1994) Adverse events of erythropoietin in long-term and in acute/short-term treatment. Clin Investig 72: S36–S43

    CAS  PubMed  Google Scholar 

  • Serradell M, Diaz-Ricart M, Cases A, Zurbano MJ, Aznar-Salatti J, Lopez-Pedret J, et al (2001) Uremic medium disturbs the hemostatic balance of cultured human endothelial cells. Thromb Haemost 86: 1099–1105

    CAS  PubMed  Google Scholar 

  • Fuste B, Serradell M, Escolar G, Cases A, Mazzara R, Castillo R, et al (2002) Erythropoietin triggers a signaling pathway in endothelial cells and increases the thrombogenicity of their extracellular matrices in vitro. Thromb Haemost 88: 678–685

    PubMed  Google Scholar 

  • Vaziri ND, Zhou XJ, Smith J, Oveisi F, Baldwin K, Purdy RE (1995) In vivo and in vitro pressor effects of erythropoietin in rats. Am J Physiol 269: F838–845

    CAS  PubMed  Google Scholar 

  • Tepel M, Wischniowski H, Zidek W (1992) Erythropoietin induced transmembrane calcium influx in essential hypertension. Life Sci 51: 161–167

    Article  CAS  PubMed  Google Scholar 

  • Marrero MB, Venema RC, Ma H, Ling BN, Eaton DC (1998) Erythropoietin receptor-operated Ca2+ channels: activation by phospholipase C-gamma 1. Kidney Int 53: 1259–1268

    Article  CAS  PubMed  Google Scholar 

  • Krawczyk W, Marczewski K, Ledwozyw A (1995) Level of the C3c complement in uremic patients hemodialyzed with three different dialyzer membranes, prior to the dialysis seance. Clin Nephrol 44: 340

    CAS  PubMed  Google Scholar 

  • Malyszko JS, Malyszko J, Pawlak K, Pawlak D, Buczko W, Mysliwiec M (2000) Importance of serotonergic mechanisms in the thrombotic complications in hemodialyzed patients treated with erythropoietin. Nephron 84: 305–311

    Article  CAS  PubMed  Google Scholar 

  • Malyszko J (1993) Serotonergic mechanisms are involved in the hemostatic action of erythropoietin in uremic patients. Int J Clin Lab Res 23: 42–44

    Article  CAS  PubMed  Google Scholar 

  • Turi S, Soos J, Torday C, Bereczki C, Havass Z (1994) The effect of erythropoietin on platelet function in uraemic children on haemodialysis. Pediatr Nephrol 8: 727–732

    Article  CAS  PubMed  Google Scholar 

  • Ambrus JL, Ambrus CM, Dembinsky W, Sykes D, Kulaylat MN, Patel R, et al (1999) Thromboembolic disease susceptibility related to red cell membrane fluidity in patients with polycythemia vera and effect of phlebotomies. J Med 30: 299–304

    CAS  PubMed  Google Scholar 

  • Tefferi A, Solberg LA, Silverstein MN (2000) A clinical update in polycythemia vera and essential thrombocythemia. Am J Med 109: 141–149

    Article  CAS  PubMed  Google Scholar 

  • Wannamethee G, Perry IJ, Shaper AG (1994) Haematocrit, hypertension and risk of stroke. J Intern Med 235: 163–168

    Article  CAS  PubMed  Google Scholar 

  • Shibata J, Hasegawa J, Siemens HJ, Wolber E, Dibbelt L, Li D, et al (2003) Hemostasis and coagulation at a hematocrit level of 0.85: functional consequences of erythrocytosis. Blood 101: 4416–4422

    Article  CAS  PubMed  Google Scholar 

  • Sagedal S, Hartmann A, Osnes K, Bjørnsen S, Torremocha J, Fauchald P, Kofstad J, Brosstad F (2006) Intermittent saline flushes during haemodialysis do not alleviate coagulation and clotformation in stable patients receiving reduced doses of dalteparin. Nephrol Dial Transplant 21: 444–449

    Article  PubMed  Google Scholar 

  • Ulusoy S, Kaynar K, Gul S, Ukinc K (2004) Renal failure due to Bardet-Biedl syndrome. A case report. Med Princ Pract 13: 380–382

    Article  PubMed  Google Scholar 

  • Weigert AL, Schafer AI (1998) Uremic bleeding: pathogenesis and therapy. Am J Med Sci 316: 94–104

    CAS  PubMed  Google Scholar 

  • Opatrny K Jr, Zemanova P, Mares J, Vit L, Opatrna S, Sefrna F, et al (2002) Fibrinolysis defect in long-term hemodialysis patients with type 2 diabetes mellitus and its relation to metabolic disorders. Am J Nephrol 22: 429–436

    Article  PubMed  Google Scholar 

  • Banbury MK, Brizzio ME, Rajeswaran J, Lytle BW, Blackstone EH (2006) Transfusion increases the risk of postoperative infection after cardiovascular surgery. J Am Coll Surg 202: 131–138

    Article  PubMed  Google Scholar 

  • Erber WN, Perry DJ (2006) Plasma and plasma products in the treatment of massive haemorrhage. Best Pract Res Clin Haematol 19: 97–112

    Article  CAS  PubMed  Google Scholar 

  • Pantanowitz L, Kruskall MS, Uhl L (2003) Cryoprecipitate. Patterns of use. Am J Clin Pathol 119: 874–881

    Article  PubMed  Google Scholar 

  • Liu YK, Kosfeld RE, Marcum SG (1984) Treatment of uraemic bleeding with conjugated oestrogen. Lancet 2: 887–890

    Article  CAS  PubMed  Google Scholar 

  • Livio M, Mannucci PM, Vigano G, Mingardi G, Lombardi R, Mecca G, et al (1986) Conjugated estrogens for the management of bleeding associated with renal failure. N Engl J Med 315: 731–735

    Article  CAS  PubMed  Google Scholar 

  • Vigano G, Gaspari F, Locatelli M, Pusineri F, Bonati M, Remuzzi G (1988) Dose-effect and pharmacokinetics of estrogens given to correct bleeding time in uremia. Kidney Int 34: 853–858

    Article  CAS  PubMed  Google Scholar 

  • Zoja C, Vigano G, Bergamelli A, Benigni A, de Gaetano G, Remuzzi G (1988) Prolonged bleeding time and increased vascular prostacyclin in rats with chronic renal failure: effects of conjugated estrogens. J Lab Clin Med 112: 380–386

    CAS  PubMed  Google Scholar 

  • Heistinger M, Stockenhuber F, Schneider B, Pabinger I, Brenner B, Wagner B, et al (1990) Effect of conjugated estrogens on platelet function and prostacyclin generation in CRF. Kidney Int 38: 1181–1186

    Article  CAS  PubMed  Google Scholar 

  • Bonazzola S, Noris M, Todeschini M, Zappella S, Zoja C, Corna D, Gaspari F, Marchetti G, Remuzzi G (1998) 17β-estradiol fully corrects abnormal primary hemostasis in experimental uremia by effectively limiting vascular endothelial overexpression of nitric oxide forming enzymes. J Am Soc Nephrol 9: 3088A

    Google Scholar 

  • Zoja C, Noris M, Corna D, Vigano G, Perico N, dev Gaetano G, et al (1991) L-arginine, the precursor of nitric oxide, abolishes the effect of estrogens on bleeding time in experimental uremia. Lab Invest 65: 479–483

    CAS  PubMed  Google Scholar 

  • Sabovic M, Zupan IP, Salobir B, Zupan I, Cernelc P, Lavre J, et al (2005) The effect of long-term, low-dose tranexamic acid treatment on platelet dysfunction and haemoglobin levels in haemodialysis patients. Thromb Haemost 94: 1245–1250

    CAS  PubMed  Google Scholar 

  • Vujkovac B, Lavre J, Sabovic M (1998) Successful treatment of bleeding from colonic angiodysplasias with tranexamic acid in a hemodialysis patient. Am J Kidney Dis 31: 536–538

    Article  CAS  PubMed  Google Scholar 

  • Vujkovac B, Sabovic M (2000) Treatment of subdural and intracerebral haematomas in a haemodialysis patient with tranexamic acid. Nephrol Dial Transplant 15: 107–109

    Article  CAS  PubMed  Google Scholar 

  • Sabovic M, Lavre J, Vujkovac B (2003) Tranexamic acid is beneficial as adjunctive therapy in treating major upper gastrointestinal bleeding in dialysis patients. Nephrol Dial Transplant 18: 1388–1391

    Article  CAS  PubMed  Google Scholar 

  • Casserly LF, Dember LM (2003) Thrombosis in endstage renal disease. Semin Dial 16: 245–256

    Article  PubMed  Google Scholar 

  • Hörl WH (1998) Genesis of the uraemic syndrome: role of uraemic toxins. Wien Klin Wochenschr 110: 511–520

    PubMed  Google Scholar 

  • Bevers EM, Comfurius P, Zwaal RF (1991) Platelet procoagulant activity: physiological significance and mechanisms of exposure. Blood Rev 5: 146–154

    Article  CAS  PubMed  Google Scholar 

  • Bevers EM, Comfurius P, van Rijn JL, Hemker HC, Zwaal RF (1982) Generation of prothrombin-converting activity and the exposure of phosphatidylserine at the outer surface of platelets. Eur J Biochem 122: 429–436

    Article  CAS  PubMed  Google Scholar 

  • Zwaal RF, Comfurius P, Bevers EM (1992) Platelet procoagulant activity and microvesicle formation. Its putative role in hemostasis and thrombosis. Biochim Biophys Acta 1180: 1–8

    Article  CAS  PubMed  Google Scholar 

  • Bonomini M, Dottori S, Amoroso L, Arduini A, Sirolli V (2004) Increased platelet phosphatidylserine exposure and caspase activation in chronic uremia. J Thromb Haemost 2: 1275–1281

    Article  CAS  PubMed  Google Scholar 

  • Lozano M, Oppenheimer F, Cofan F, Rosinyol L, Mazzara R, Escolar G, Ordinas A (2001) Platelet procoagulant activity induced in vivo by muromonab-CD3 infusion in uremic patients. Thromb Res 104: 405–411

    Article  CAS  PubMed  Google Scholar 

  • Chuang YC, Chen JB, Yang LC, Kuo CY (2003) Significance of platelet activation in vascular access survival of haemodialysis patients. Nephrol Dial Transplant 18: 947–954

    Article  CAS  PubMed  Google Scholar 

  • Sirolli V, Strizzi L, Di Stante S, Robuffo I, Procopio A, Bonomini M (2001) Platelet activation and plateleterythrocyte aggregates in end-stage renal disease patients on hemodialysis. Thromb Haemost 86: 834–839

    CAS  PubMed  Google Scholar 

  • Borawski J, Pawlak K, Mysliwiec M (2002) Inflammatory markers and platelet aggregation tests as predictors of hemoglobin and endogenous erythropoietin levels in hemodialysis patients. Nephron 91: 671–681

    Article  CAS  PubMed  Google Scholar 

  • Rinder HM, Bonan JL, Rinder CS, Ault KA, Smith BR (1991) Activated and unactivated platelet adhesion to monocytes and neutrophils. Blood 78: 1760–1769

    CAS  PubMed  Google Scholar 

  • Napoleone E, Di Santo A, Lorenzet R (1997) Monocytes upregulate endothelial cell expression of tissue factor: a role for cell-cell contact and cross-talk. Blood 89: 541–549

    CAS  PubMed  Google Scholar 

  • Faraday N, Braunstein JB, Heldman AW, Bolton ED, Chiles KA, Gerstenblith G, et al (2004) Prospective evaluation of the relationship between platelet-leukocyte conjugate formation and recurrent myocardial ischemia in patients with acute coronary syndromes. Platelets 15: 9–14

    Article  CAS  PubMed  Google Scholar 

  • Furman MI, Barnard MR, Krueger LA, Fox ML, Shilale EA, Lessard DM, et al (2001) Circulating monocyteplatelet aggregates are an early marker of acute myocardial infarction. J Am Coll Cardiol 38: 1002–1006

    Article  CAS  PubMed  Google Scholar 

  • Nijm J, Wikby A, Tompa A, Olsson AG, Jonasson L (2005) Circulating levels of proinflammatory cytokines and neutrophil-platelet aggregates in patients with coronary artery disease. Am J Cardiol 95: 452–456

    Article  CAS  PubMed  Google Scholar 

  • Ando M, Iwata A, Ozeki Y, Tsuchiya K, Akiba T, Nihei H (2002) Circulating platelet-derived microparticles with procoagulant activity may be a potential cause of thrombosis in uremic patients. Kidney Int 62: 1757–1763

    Article  PubMed  Google Scholar 

  • Kobayashi K, Maeda K, Koshikawa S, Kawaguchi Y, Shimizu N, Naito C (1980) Antithrombotic therapy with ticlopidine in chronic renal failure patients on maintenance hemodialysis – a multicenter collaborative double blind study. Thromb Res 20: 255–261

    Article  CAS  PubMed  Google Scholar 

  • Domoto DT, Bauman JE, Joist JH (1991) Combined aspirin and sulfinpyrazone in the prevention of recurrent hemodialysis vascular access thrombosis. Thromb Res 62: 737–743

    Article  CAS  PubMed  Google Scholar 

  • Sreedhara R, Himmelfarb J, Lazarus JM, Hakim RM (1994) Anti-platelet therapy in graft thrombosis: results of a prospective, randomized, double-blind study. Kidney Int 45: 1477–1483

    Article  CAS  PubMed  Google Scholar 

  • Kooistra MP, van Es A, Marx JJ, Hertsig ML, Struyvenberg A (1994) Low-dose aspirin does not prevent thrombovascular accidents in low-risk haemodialysis patients during treatment with recombinant human erythropoietin. Nephrol Dial Transplant 9: 1115–1120

    CAS  PubMed  Google Scholar 

  • Kaufman JS, O'Connor TZ, Zhang JH, Cronin RE, Fiore LD, Ganz MB, Goldfarb DS, Peduzzi PN; Veterans Affairs Cooperative Study Group on Hemodialysis Access Graft Thrombosis (2003) Randomized controlled trial of clopidogrel plus aspirin to prevent hemodialysis access graft thrombosis. J Am Soc Nephrol 14: 2313–2321

    Article  CAS  PubMed  Google Scholar 

  • Goicoechea M, Caramelo C, Ochando A, Andrea C, Garvia R, Ortiz A (2000) Antiplatelet therapy alters iron requirements in hemodialysis patients. Am J Kidney Dis 36: 80–87

    Article  CAS  PubMed  Google Scholar 

  • Greinacher A (1998) Heparin-induced thrombocytopenia: pathophysiology and clinical concerns. Baillieres Clin Haematol 11: 461–474

    Article  CAS  PubMed  Google Scholar 

  • Warkentin TE (1999) Heparin-induced thrombocytopenia: a ten-year retrospective. Annu Rev Med 50: 129–147

    Article  CAS  PubMed  Google Scholar 

  • Weismann RE, Tobin RW (1958) Arterial embolism occurring during systemic heparin therapy. AMA Arch Surg 76: 219–25; 225–227

    Google Scholar 

  • Rhodes GR, Dixon RH, Silver D (1973) Heparin induced thrombocytopenia with thrombotic and hemorrhagic manifestations. Surg Gynecol Obstet 136: 409–416

    CAS  PubMed  Google Scholar 

  • Amiral J, Bridey F, Dreyfus M, Vissoc AM, Fressinaud E, Wolf M, Meyer D (1992) Platelet factor 4 complexed to heparin is the target for antibodies generated in heparin-induced thrombocytopenia. Thromb Haemost 68: 95–96

    CAS  PubMed  Google Scholar 

  • Kelton JG (2002) Heparin-induced thrombocytopenia: an overview. Blood Rev 16: 77–80

    Article  CAS  PubMed  Google Scholar 

  • Baglin TP (2001) Heparin induced thrombocytopenia thrombosis (HIT/T) syndrome: diagnosis and treatment. J Clin Pathol 54: 272–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabris F, Ahmad S, Cella G, Jeske WP, Walenga JM, Fareed J (2000) Pathophysiology of heparin-induced thrombocytopenia. Clinical and diagnostic implications – a review. Arch Pathol Lab Med 124: 1657–1666

    CAS  PubMed  Google Scholar 

  • Warkentin TE, Levine MN, Hirsh J, Horsewood P, Roberts RS, Gent M, et al (1995) Heparin-induced thrombocytopenia in patients treated with low-molecular-weight heparin or unfractionated heparin. N Engl J Med 332: 1330–1335

    Article  CAS  PubMed  Google Scholar 

  • Reilly RF (2003) The pathophysiology of immune-mediated heparin-induced thrombocytopenia. Semin Dial 16: 54–60

    Article  PubMed  Google Scholar 

  • Yamamoto S, Koide M, Matsuo M, Suzuki S, Ohtaka M, Saika S, Matsuo T (1996) Heparin-induced thrombocytopenia in hemodialysis patients. Am J Kidney Dis 28: 82–85

    Article  CAS  PubMed  Google Scholar 

  • Greinacher A, Zinn S, Wizemann, Birk UW (1996) Heparin-induced antibodies as a risk factor for thromboembolism and haemorrhage in patients undergoing chronic haemodialysis. Lancet 348: 764

    Article  CAS  PubMed  Google Scholar 

  • Sitter T, Spannagl M, Banas B, Schiffl H (1998) Prevalence of heparin-induced PF4-heparin antibodies in hemodialysis patients. Nephron 79: 245–246

    Article  CAS  PubMed  Google Scholar 

  • Luzzatto G, Bertoli M, Cella G, Fabris F, Zaia B, Girolami A (1998) Platelet count, anti-heparin/platelet factor 4 antibodies and tissue factor pathway inhibitor plasma antigen level in chronic dialysis. Thromb Res 89: 115–122

    Article  CAS  PubMed  Google Scholar 

  • Amiral J, Wolf M, Fischer A, Boyer-Neumann C, Vissac A, Meyer D (1996) Pathogenicity of IgA and/or IgM antibodies to heparin-PF4 complexes in patients with heparin-induced thrombocytopenia. Br J Haematol 92: 954–959

    Article  CAS  PubMed  Google Scholar 

  • Tazzari PL, Ricci F, Vitale M, Malferrari F, Salama A, Schwind P, et al (2002) Heparin-induced thrombocytopenia: detection of antiheparin/PF4 antibodies by means of heparin/PF4-coated beads and flow cytometry. Transfus Med 12: 193–198

    Article  CAS  PubMed  Google Scholar 

  • Boon DM, van Vliet HH, Zietse R, Kappers-Klunne MC (1996) The presence of antibodies against a PF4-heparin complex in patients on haemodialysis. Thromb Haemost 76: 480

    CAS  PubMed  Google Scholar 

  • O'Shea SI, Sands JJ, Nudo SA, Ortel (2002) TL Frequency of anti-heparin-platelet factor 4 antibodies in hemodialysis patients and correlation with recurrent vascular access thrombosis. Am J Hematol 69: 72–73

    Article  PubMed  CAS  Google Scholar 

  • Roe SD, Cassidy MJ, Haynes AP, Byrne JL (1998) Heparin-induced thrombocytopenia (HIT) and thrombosis in a haemodialysis-dependent patient with systemic vasculitis. Nephrol Dial Transplant 13: 3226–3229

    Article  CAS  PubMed  Google Scholar 

  • Pena de la Vega L, Miller RS, Benda MM, Grill DE, Johnson MG, McCarthy JT, et al (2005) Association of heparin-dependent antibodies and adverse outcomes in hemodialysis patients: a population-based study. Mayo Clin Proc 80: 995–1000

    Article  PubMed  Google Scholar 

  • Chong BH, Pitney WR, Castaldi PA (1982) Heparininduced thrombocytopenia: association of thrombotic complications with heparin-dependent IgG antibody that induces thromboxane synthesis in platelet aggregation. Lancet 2: 1246–1249

    Article  CAS  PubMed  Google Scholar 

  • Visentin GP, Ford SE, Scott JP, Aster RH (1994) Antibodies from patients with heparin-induced thrombocytopenia/thrombosis are specific for platelet factor 4 complexed with heparin or bound to endothelial cells. J Clin Invest 93: 81–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blank M, Shoenfeld Y, Tavor S, Praprotnik S, Boffa MC, Weksler B, et al (2002) Anti-platelet factor 4/heparin antibodies from patients with heparin-induced thrombocytopenia provoke direct activation of microvascular endothelial cells. Int Immunol 14: 121–129

    Article  CAS  PubMed  Google Scholar 

  • Burgess JK, Lindeman R, Chesterman CN, Chong BH (1995) Single amino acid mutation of Fc gamma receptor is associated with the development of heparin-induced thrombocytopenia. Br J Haematol 91: 761–766

    Article  CAS  PubMed  Google Scholar 

  • Horne MK 3rd, Alkins BR (1996) Platelet binding of IgG from patients with heparin-induced thrombocytopenia. J Lab Clin Med 127: 435–442

    Article  PubMed  Google Scholar 

  • Newman PM, Chong BH (2000) Heparin-induced thrombocytopenia: new evidence for the dynamic binding of purified anti-PF4-heparin antibodies to platelets and the resultant platelet activation. Blood 96: 182–187

    CAS  PubMed  Google Scholar 

  • Palomo I, Pereira J, Alarcon M, Diaz G, Hidalgo P, Pizarro I, et al (2005) Prevalence of heparin-induced antibodies in patients with chronic renal failure undergoing hemodialysis. J Clin Lab Anal 19: 189–195

    Article  CAS  PubMed  Google Scholar 

  • Fischer KG (2002) Hirudin in renal insufficiency. Semin Thromb Hemost 28: 467–482

    Article  CAS  PubMed  Google Scholar 

  • Pöschel KA, Bucha E, Esslinger HU, Ulbricht K, Nortersheuser P, Stein G, Nowak G (2004) Anticoagulant efficacy of PEG-Hirudin in patients on maintenance hemodialysis. Kidney Int 65: 666–674

    Article  PubMed  Google Scholar 

  • Henny CP, ten Cate H, Surachno S, Stevens P, Buller HR, den Hartog M, ten Cate JW (1985) The effectiveness of a low molecular weight heparinoid in chronic intermittent haemodialysis. Thromb Haemost 54: 460–462

    CAS  PubMed  Google Scholar 

  • Ireland H, Lane DA, Flynn A, Anastassiades E, Curtis JR (1986) The anticoagulant effect of heparinoid Org 10172 during haemodialysis: an objective assessment. Thromb Haemost 55: 271–275

    CAS  PubMed  Google Scholar 

  • Von Bonsdorff M, Stiekema J, Harjanne A, Alapiessa U (1990) A new low molecular weight heparinoid Org 10172 as anticoagulant in hemodialysis. Int J Artif Organs 13: 103–108

    CAS  PubMed  Google Scholar 

  • Greinacher A, Philippen KH, Kemkes-Matthes B, Mockl M, Mueller-Eckhardt C, Schaefer K (1993) Heparin-associated thrombocytopenia type II in a patient with end-stage renal disease: successful anticoagulation with the low-molecular-weight heparinoid Org 10172 during haemodialysis. Nephrol Dial Transplant 8: 1176–1177

    CAS  PubMed  Google Scholar 

  • Polkinghorne KR, McMahon LP, Becker GJ (2002) Pharmacokinetic studies of dalteparin (fragmin), enoxaparin (clexane), and danaparoid sodium (orgaran) in stable chronic hemodialysis patients. Am J Kidney Dis 40: 990–995

    Article  CAS  PubMed  Google Scholar 

  • Apsner R, Buchmayer H, Lang T, Unver B, Speiser W, Sunder-Plassmann G, Hörl WH (2001) Simplified citrate anticoagulation for high-flux hemodialysis. Am J Kidney Dis 38: 979–987

    Article  CAS  PubMed  Google Scholar 

  • Apsner R, Buchmayer H, Gruber D, Sunder-Plassmann G (2005) Citrate for long-term hemodialysis: prospective study of 1,009 consecutive high-flux treatments in 59 patients. Am J Kidney Dis 45: 557–564

    Article  CAS  PubMed  Google Scholar 

  • Druml W (2002) Anticoagulation in continuous renal replacement procedures. Wien Klin Wochenschr 114: 78–80

    PubMed  Google Scholar 

  • Bauer E, Derfler K, Joukhadar C, Druml W (2005) Citrate kinetics in patients receiving long-term hemodialysis therapy. Am J Kidney Dis 46: 903–907

    Article  CAS  PubMed  Google Scholar 

  • al-Eryani AY, al-Momen AK, Fayed DF, Allam AK (1995) Successful heparin desensitization after heparininduced anaphylactic shock. Thromb Res 79: 523–526

    Article  CAS  PubMed  Google Scholar 

  • Ueda A, Nagase S, Morito N, Yotsumoto M, Ohba S, Hasegawa Y, et al (2001) Anaphylactoid reaction induced by low-molecular-weight heparin in a hemodialysis patient. Nephron 87: 93–94

    Article  CAS  PubMed  Google Scholar 

  • Tholl U, Greinacher A, Overdick K, Anlauf M (1997) Life-threatening anaphylactic reaction following parathyroidectomy in a dialysis patient with heparin-induced thrombocytopenia. Nephrol Dial Transplant 12: 2750–2755

    Article  CAS  PubMed  Google Scholar 

  • Hewitt RL, Akers DL, Leissinger CA, Gill JI, Aster RH (1998) Concurrence of anaphylaxis and acute heparininduced thrombocytopenia in a patient with heparin-induced antibodies. J Vasc Surg 28: 561–565

    Article  CAS  PubMed  Google Scholar 

  • Tejedor Alonso MA, Lopez Revuelta K, Garcia Bueno MJ, Casas Losada ML, Rosado Ingelmo A, Gruss Vergara E, et al (2005) Thrombocytopenia and anaphylaxis secondary to heparin in a hemodialysis patient. Clin Nephrol 63: 236–240

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter H. Hörl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hörl, W. Thrombozytopathie und Blutungskomplikationen bei Urämie. Wien Klin Wochenschr 118, 134–150 (2006). https://doi.org/10.1007/s00508-006-0574-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-006-0574-5

Keywords

Schlüsselwörter

Navigation