Skip to main content
Log in

A GRA approach to a MAGDM problem with interval-valued q-rung orthopair fuzzy information

  • Optimization
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Interval-valued q-rung orthopair fuzzy numbers (IVq-ROFNs), as a generalization of the q-rung orthopair fuzzy numbers, are a more robust and reliable tool when dealing with uncertain information during decision-making processes, and can therefore be applied to a broader range of situations. This paper presents an approach to a multi-attribute group decision-making (MAGDM) problem in an IVq-ROF environment. In decision-making, the most sensitive part is information fusion (information aggregation); for this purpose, we extend the Einstein geometric aggregation operator for IVq-ROFNs. Einstein operators are valuable in information fusion, as they consider the interrelationship between arguments. Thus, while dealing with the information fusion process, the interrelationship between arguments ensures that aggregated values do not lose information. We use the traditional grey relational analysis (GRA) approach to rank the alternatives based on the attributes. In the GRA approach, we use positive and negative ideal solutions to obtain the grey relational coefficient (GRC). The GRCs of alternatives are calculated based on a new distance measure, which utilizes the hesitancy or indeterminacy degree of IVq-ROFNs. Utilizing the hesitancy or indeterminacy degree in distance measures reduces information loss significantly. The proposed approach considers three cases of attributes’ weights: partially known, completely unknown, and known. Consideration of three cases of attributes’ weights allows the approach to be applied to any appropriate MAGDM problem. We establish an optimization model to compute partially known attributes’ weights; we use the entropy weight determination method to compute unknown attributes’ weights. Finally, we discuss a real-world case study to validate the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data availability

The manuscript has no associated data. The data used is included in the manuscript.

References

  • Atanassov KT (1999a) Interval valued intuitionistic fuzzy sets. In: Intuitionistic fuzzy sets. Studies in fuzziness and soft computing, vol 35. Physica, Heidelberg, pp 139-177

  • Atanassov KT (1999b) Intuitionistic fuzzy sets. In: Intuitionistic fuzzy sets. Studies in fuzziness and soft computing, vol 35. Physica, Heidelberg, pp 1–137

  • Biswas A, Sarkar B (2019) Interval-valued Pythagorean fuzzy TODIM approach through point operator-based similarity measures for multicriteria group decision making. Kybernetes 48:496–519

    Article  Google Scholar 

  • Calvo T, Mayor G, Mesiar R (2012) Aggregation operators: new trends and applications. In: Studies in fuzziness and soft computing, 97. Physica, Heidelberg

  • Chen SM, Kuo LW, Zou XY (2018) Multiattribute decision making based on Shannon’s information entropy, non-linear programming methodology, and interval-valued intuitionistic fuzzy values. Inf Sci 465:404–424

    Article  MathSciNet  MATH  Google Scholar 

  • Darko AP, Liang D (2020) Some q-rung orthopair fuzzy Hamacher aggregation operators and their application to multiple attribute group decision making with modified EDAS method. Eng Appl Artif Intell 87:103259

    Article  Google Scholar 

  • D’Angelo G, Palmieri F, Robustelli A (2022) Artificial neural networks for resources optimization in energetic environment. Soft Comput 26:1779–1792

    Article  Google Scholar 

  • Gao H, Ran L, Wei G, Wei C, Wu J (2020) VIKOR method for MAGDM based on q-rung interval-valued orthopair fuzzy information and its application to supplier selection of medical consumption products. Int J Environ Res Public Health 17(2):525

    Article  Google Scholar 

  • Garg H (2021a) New exponential operation laws and operators for interval-valued q-rung orthopair fuzzy sets in group decision making process. Neural Comput Appl 33(20):13937–13963

  • Garg H (2021) A new possibility degree measure for interval-valued q-rung orthopair fuzzy sets in decision-making. Int J Intell Syst 36:526–557

    Article  Google Scholar 

  • Garg H, Chen SM (2020) Multiattribute group decision making based on neutrality aggregation operators of q-rung orthopair fuzzy sets. Inf Sci 517:427–447

    Article  MathSciNet  MATH  Google Scholar 

  • Gumus AT, Yayla AY, Çelik E, Yildiz A (2013) A combined fuzzy-AHP and fuzzy-GRA methodology for hydrogen energy storage method selection in Turkey. Energies 6:3017–3032

    Article  Google Scholar 

  • Gupta P, Mehlawat MK, Ahemad F (2021) An MAGDM approach with q-rung orthopair trapezoidal fuzzy information for waste disposal site selection problem. Int J Intell Syst 36:4524–4559

    Article  Google Scholar 

  • Gupta P, Mehlawat MK, Grover N, Pedrycz W (2018) Multi-attribute group decision making based on extended TOPSIS method under interval-valued intuitionistic fuzzy environment. Appl Soft Comput 69:554–567

    Article  Google Scholar 

  • Hwang CL, Yoon K (1981) Methods for multiple attribute decision making. In: Multiple attribute decision making. Lecture notes in economics and mathematical Systems, vol 186. Springer, Berlin, Heidelberg, pp 58–191

  • Joshi BP, Gegov A (2020) Confidence levels q-rung orthopair fuzzy aggregation operators and its applications to MCDM problems. Int J Intell Syst 35:125–149

    Article  Google Scholar 

  • Joshi BP, Singh A, Bhatt PK, Vaisla KS (2018) Interval valued q-rung orthopair fuzzy sets and their properties. J Intell Fuzzy Syst 35:5225–5230

    Article  Google Scholar 

  • Ju Y, Luo C, Ma J, Gao H, Santibanez Gonzalez ED, Wang A (2019) Some interval-valued q-rung orthopair weighted averaging operators and their applications to multiple-attribute decision making. Int J Intell Syst 34:2584–2606

    Article  Google Scholar 

  • Julong D et al (1989) Introduction to grey system theory. J Grey Syst 1:1–24

    MathSciNet  MATH  Google Scholar 

  • Khan MSA, Abdullah S (2018) Interval-valued Pythagorean fuzzy GRA method for multiple-attribute decision making with incomplete weight information. Int J Intell Syst 33:1689–1716

    Article  Google Scholar 

  • Li N, Zhao H (2016) Performance evaluation of eco-industrial thermal power plants by using fuzzy GRA-VIKOR and combination weighting techniques. J Clean Prod 135:169–183

    Article  Google Scholar 

  • Liu L, Wu J, Wei G, Wei C, Wang J, Wei Y (2020) Entropy-based GLDS method for social capital selection of a PPP project with q-rung orthopair fuzzy information. Entropy 22:414

    Article  MathSciNet  Google Scholar 

  • Liu P, Ali Z, Mahmood T (2021) Generalized complex q-rung orthopair fuzzy Einstein averaging aggregation operators and their application in multi-attribute decision making. Complex Intell Syst 7:511–538

    Article  Google Scholar 

  • Liu P, Wang P (2018) Multiple-attribute decision-making based on archimedean Bonferroni operators of q-rung orthopair fuzzy numbers. IEEE Trans Fuzzy Syst 27:834–848

    Article  Google Scholar 

  • Mahmood T, Ali Z (2021) Entropy measure and TOPSIS method based on correlation coefficient using complex q-rung orthopair fuzzy information and its application to multi-attribute decision making. Soft Comput 25:1249–1275

    Article  MATH  Google Scholar 

  • Mesiar R, Šipeky L, Gupta P, LeSheng J (2017) Aggregation of OWA operators. IEEE Trans Fuzzy Syst 26:284–291

    Article  Google Scholar 

  • Mishra AR, Rani P, Pardasani KR, Mardani A, Stević Ž, Pamučar D (2020) A novel entropy and divergence measures with multi-criteria service quality assessment using interval-valued intuitionistic fuzzy TODIM method. Soft Comput 24:11641–11661

    Article  MATH  Google Scholar 

  • Mohagheghi V, Mousavi SM (2021) Group decision making by a last aggregation approach under interval-valued Pythagorean fuzzy environment for sustainable project decision. Sci Iran. https://doi.org/10.24200/sci.2021.54711.3880

    Article  Google Scholar 

  • Peng X, Li W (2019) Algorithms for interval-valued Pythagorean fuzzy sets in emergency decision making based on multiparametric similarity measures and WDBA. IEEE Access 7:7419–7441

    Article  Google Scholar 

  • Peng X, Yang Y (2016) Fundamental properties of interval-valued Pythagorean fuzzy aggregation operators. Int J Intell Syst 31:444–487

    Article  Google Scholar 

  • Peng X, Yuan H, Yang Y (2017) Pythagorean fuzzy information measures and their applications. Int J Intell Syst 32:991–1029

    Article  Google Scholar 

  • Rahman K, Abdullah S (2019) Some induced generalized interval-valued Pythagorean fuzzy Einstein geometric aggregation operators and their application to group decision-making. Comput Appl Math 38:1–23

    Article  MathSciNet  MATH  Google Scholar 

  • Rahman K, Abdullah S, Ali A, Amin F (2019) Interval-valued Pythagorean fuzzy Einstein hybrid weighted averaging aggregation operator and their application to group decision making. Complex Intell Syst 5:41–52

    Article  Google Scholar 

  • Rawat SS et al (2022) Multiple attribute decision making based on q-rung orthopair fuzzy Hamacher Muirhead mean operators. Soft Comput. https://doi.org/10.1007/s00500-021-06549-9

    Article  Google Scholar 

  • Tan R, Zhang W (2021) Decision-making method based on new entropy and refined single-valued neutrosophic sets and its application in typhoon disaster assessment. Appl Intell 51:283–307

    Article  Google Scholar 

  • Tzeng GH, Huang JJ (2011) Multiple attribute decision making: methods and applications. CRC Press

    Book  MATH  Google Scholar 

  • Wang J, Gao H, Wei G, Wei Y (2019) Methods for multiple-attribute group decision making with q-rung interval-valued orthopair fuzzy information and their applications to the selection of green suppliers. Symmetry 11:56

    Article  MATH  Google Scholar 

  • Wang J, Wei G, Wang R, Alsaadi FE, Hayat T, Wei C, Zhang Y, Wu J (2019) Some q-rung interval-valued orthopair fuzzy Maclaurin symmetric mean operators and their applications to multiple attribute group decision making. Int J Intell Syst 34:2769–2806

    Article  Google Scholar 

  • Wei G, Gao H, Wei Y (2018) Some q-rung orthopair fuzzy Heronian mean operators in multiple attribute decision making. Int J Intell Syst 33:1426-1458

    Article  Google Scholar 

  • Wei GW (2010) GRA method for multiple attribute decision making with incomplete weight information in intuitionistic fuzzy setting. Knowl Based Syst 23:243–247

    Article  Google Scholar 

  • Xu Z (2015) Uncertain multi-attribute decision making: methods and applications. Springer, London

    Book  MATH  Google Scholar 

  • Yager RR (1996) Quantifier guided aggregation using OWA operators. Int J Intell Syst 11:49–73

    Article  Google Scholar 

  • Yager RR (2003) Induced aggregation operators. Fuzzy Sets Syst 137:59–69

    Article  MathSciNet  MATH  Google Scholar 

  • Yager RR (2013) Pythagorean fuzzy subsets. In: 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS). IEEE, pp 57–61

  • Yager RR (2016) Generalized orthopair fuzzy sets. IEEE Trans Fuzzy Syst 25:1222–1230

    Article  Google Scholar 

  • Yang W, Pang Y (2020) New q-rung orthopair hesitant fuzzy decision making based on linear programming and TOPSIS. IEEE Access 8:221299–221311

    Article  Google Scholar 

  • Yang Y, Chen ZS, Rodríguez RM, Pedrycz W, Chin KS (2021) Novel fusion strategies for continuous interval-valued q-rung orthopair fuzzy information: a case study in quality assessment of SmartWatch appearance design. Int J Mach Learn Cybern. https://doi.org/10.1007/s13042-020-01269-2

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MATH  Google Scholar 

  • Zhang H, Nan T, He Y (2022) q-rung orthopair fuzzy N-soft aggregation operators and corresponding applications to multiple-attribute group decision making. Soft Comput. https://doi.org/10.1007/s00500-022-07126-4

    Article  Google Scholar 

  • Zhao M, Wei G, Wei C, Wu J (2021) TODIM method for interval-valued Pythagorean fuzzy MAGDM based on cumulative prospect theory and its application to green supplier selection. Arab J Sci Eng 46:1899–1910

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Antonio Di Nola, Editor-in-Chief, the Associate Editor and esteemed reviewers for their valuable comments and suggestions. The second author acknowledges the financial support of Institution of Eminence, University of Delhi through its FRP scheme.

Funding

The first author, Faizan Ahemad, acknowledges DST INSPIRE Fellowship (DST/INSPIRE Fellowship/2018/IF180317) by the Department of Science and Technology, India.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the study.

Corresponding author

Correspondence to Pankaj Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors confirm that they have abided to the publication ethics and state that this work is original and has not been used for publication anywhere before.

Informed consent

This article does not involve any human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix

A Appendix

Definition 6

(Atanassov 1999a) An IVIFS \(\Re \) in \(\Omega \) is defined as

$$\begin{aligned} \Re= & {} \{\langle \ell , \mu _{\Re }(\ell ), \vartheta _{\Re }(\ell ) \rangle |\ell \in \Omega \}, \end{aligned}$$
(24)

where the intervals \(\mu _{\Re }(\ell ) = [\mu ^{L}_{\Re }(\ell ), \mu ^{U}_{\Re }(\ell )]\) and \(\vartheta _{\Re }(\ell ) = [\vartheta ^{L}_{\Re }(\ell ), \vartheta ^{U}_{\Re }(\ell )]\) \(\subseteq [0,1]\) represents the membership and non-membership degrees, respectively, such that \(0 \le \sup \mu _{\Re }(\ell ) + \sup \vartheta _{\Re }(\ell ) \le 1\) for all elements \(\ell \in \Omega \). For convenience, an IVIFN is represented as \(\Re = \langle [\mu ^{L}_{\Re }, \mu ^{U}_{\Re }], [\vartheta ^{L}_{\Re }, \vartheta ^{U}_{\Re }] \rangle \), with the condition that \(0 \le \mu ^{U}_{\Re } + \vartheta ^{U}_{\Re } \le 1\).

Definition 7

(Khan and Abdullah 2018; Peng and Yang 2016) An IVPFS \(\mathfrak {P}\) in \(\Omega \) is defined as

$$\begin{aligned} \mathfrak {P}= & {} \{\langle \ell , \mu _{\mathfrak {P}}(\ell ), \vartheta _{\mathfrak {P}}(\ell ) \rangle |\ell \in \Omega \}, \end{aligned}$$
(25)

where intervals \(\mu _{\mathfrak {P}}(\ell ) = [\mu ^{L}_{\mathfrak {P}}(\ell ), \mu ^{U}_{\mathfrak {P}}(\ell )]\) and \(\vartheta _{\mathfrak {P}}(\ell ) = [\vartheta ^{L}_{\mathfrak {P}}(\ell ), \vartheta ^{U}_{\mathfrak {P}}(\ell )]\) \(\subseteq [0,1]\) represents the membership and non-membership degrees, respectively, such that \(0 \le (\sup \mu _{\mathfrak {P}}(\ell ))^2 + (\sup \vartheta _{\mathfrak {P}}(\ell ))^2 \le 1\) for all elements \(\ell \in \Omega \). For the convenience, the IVPFN is represented as \(\mathfrak {P} = \langle [\mu ^{L}_{\mathfrak {P}}, \mu ^{U}_{\mathfrak {P}}], [\vartheta ^{L}_{\mathfrak {P}}, \vartheta ^{U}_{\mathfrak {P}}] \rangle \), with the condition \(0 \le (\mu ^{U}_{\mathfrak {P}})^2 + (\vartheta ^{U}_{\mathfrak {P}})^2 \le 1\).

Theorem 3

Let \(I_i = \langle [\mu ^{L}_i, \mu ^{U}_i], [\vartheta ^{L}_i, \vartheta ^{U}_i] \rangle \), \((i=1,2,\ldots , n)\) be n IVq-ROFNs, then the IVq-ROFEWG operator satisfies the following basic properties:

  1. I

    Commutativity: If \(I'_1, I'_2, \ldots , I'_n\) is any permutation of \(I_1, I_2, \ldots , I_n\), then

    $$\begin{aligned} \text {IV}q{} & {} -\text {ROFEWG}_{\omega }\left( I_1, I_2, \ldots , I_n \right) = \text {IV}q\nonumber \\{} & {} -\text {ROFEWG}_{\omega }\left( I'_1, I'_2, \ldots , I'_n \right) . \end{aligned}$$
    (26)
  2. II

    Idempotency: If \(I_i = I\), \(\forall i\), then

    $$\begin{aligned} \text {IV}q-\text {ROFEWG}_{\omega }\left( I_1, I_2, \ldots , I_n \right) = I. \end{aligned}$$
    (27)
  3. III

    Boundedness: If \(I_{\max } =\max \limits _{1 \le i \le n} \left( I_i \right) \) and \(I_{\min } =\min \limits _{1 \le i \le n} \left( I_i \right) \), then

    $$\begin{aligned} I_{\min } \le \text {IV{ q}-ROFEWG}_{\omega }\left( I_1, I_2, \ldots , I_n \right) \le I_{\max }. \end{aligned}$$
    (28)
  4. IV

    Monotonicity: If \(I_i \le I'_i\), \(\forall i\), then

    $$\begin{aligned} \text {IV}q{} & {} -\text {ROFEWG}_{\omega }\left( I_1, I_2, \ldots , I_n \right) \nonumber \\{} & {} \le \text {IV{ q}-ROFEWG}_{\omega }\left( I'_1, I'_2, \ldots , I'_n \right) . \end{aligned}$$
    (29)

Proof

Here, we will show only the proof of properties [I.] and [II.]; the rest of the two can be proved easily.

Commutativity: Here, we have

$$\begin{aligned} \text {IV}q{} & {} -\text {ROFEWG}_{\omega }\left( I_1, I_2, \ldots , I_n \right) \nonumber \\{} & {} = \left( I_1 \right) ^{\omega _1} \otimes _e \left( I_2 \right) ^{\omega _2} \otimes _e \ldots \otimes _e \left( I_n \right) ^{\omega _n}, \end{aligned}$$
(30)

and

$$\begin{aligned} \text {IV}q{} & {} -\text {ROFEWG}_{\omega }\left( I'_1, I'_2, \ldots , I'_n \right) = \left( I'_1 \right) ^{\omega _1} \otimes _e\nonumber \\{} & {} \left( I'_2 \right) ^{\omega _2} \otimes _e \ldots \otimes _e \left( I'_n \right) ^{\omega _n}. \end{aligned}$$
(31)

Since \(\left( I'_1, I'_2, \ldots , I'_n \right) \) is any permutation of \(\left( I_1, I_2, \ldots , I_n \right) \). Thus from Eqs. (30) and (31), Eq. (26) always holds.

Idempotency: We have

$$\begin{aligned}{} & {} {\text {IV}q-\text {ROFEWG}}_{\omega }\left( I_1, I_2, \ldots , I_n \right) \\{} & {} = \left\langle \left[ \frac{\root q \of { 2 \prod _{i=1}^{n} \left( \left( \mu ^{L}_i \right) ^q \right) ^{\omega _i}}}{\root q \of {\prod _{i=1}^{n} \left( 2 - \left( \mu ^{L}_i \right) ^q \right) ^{\omega _i} + \prod _{i=1}^{n} \left( \left( \mu ^{L}_i \right) ^q \right) ^{\omega _i} }},\right. \right. \\{} & {} \left. \left. \frac{\root q \of { 2 \prod _{i=1}^{n} \left( \left( \mu ^{U}_i \right) ^q \right) ^{\omega _i}}}{\root q \of {\prod _{i=1}^{n} \left( 2 - \left( \mu ^{U}_i \right) ^q \right) ^{\omega _i} + \prod _{i=1}^{n} \left( \left( \mu ^{U}_i \right) ^q \right) ^{\omega _i} }} \right] , \right. \\{} & {} \left. \left[ \frac{\root q \of {\prod _{i=1}^{n} \left( 1 + \left( \vartheta ^{L}_i \right) ^q \right) ^{\omega _i} - \prod _{i=1}^{n} \left( 1 - \left( \vartheta ^{L}_i \right) ^q \right) ^{\omega _i} }}{\root q \of {\prod _{i=1}^{n} \left( 1 + \left( \vartheta ^{L}_i \right) ^q \right) ^{\omega _i} + \prod _{i=1}^{n} \left( 1 - \left( \vartheta ^{L}_i \right) ^q \right) ^{\omega _i} }},\right. \right. \\{} & {} \left. \left. \frac{\root q \of {\prod _{i=1}^{n} \left( 1 + \left( \vartheta ^{U}_i \right) ^q \right) ^{\omega _i} - \prod _{i=1}^{n} \left( 1 - \left( \vartheta ^{U}_i \right) ^q \right) ^{\omega _i} }}{\root q \of {\prod _{i=1}^{n} \left( 1 + \left( \vartheta ^{U}_i \right) ^q \right) ^{\omega _i} + \prod _{i=1}^{n} \left( 1 - \left( \vartheta ^{U}_i\right) ^q \right) ^{\omega _i} }} \right] \right\rangle . \end{aligned}$$

Since \(I_i = I\), \(\forall i\), then we have

$$\begin{aligned}{} & {} {\text {IV}q-\text {ROFEWG}}_{\omega }\left( I_1, I_2, \ldots , I_n \right) \\{} & {} = \left\langle \left[ \frac{\root q \of { 2 \left( \left( \mu ^{L} \right) ^q \right) ^{\sum _{i=1}^{n}\omega _i}}}{\root q \of {\left( 2 - \left( \mu ^{L} \right) ^q \right) ^{\sum _{i=1}^{n}\omega _i} + \left( \left( \mu ^{L} \right) ^q \right) ^{\sum _{i=1}^{n}\omega _i} }},\right. \right. \\{} & {} \left. \left. \frac{\root q \of { 2 \left( \left( \mu ^{U} \right) ^q \right) ^{\sum _{i=1}^{n}\omega _i}}}{\root q \of { \left( 2 - \left( \mu ^{U} \right) ^q \right) ^{\sum _{i=1}^{n}\omega _i} + \left( \left( \mu ^{U} \right) ^q \right) ^{\sum _{i=1}^{n}\omega _i} }} \right] , \right. \nonumber \\{} & {} \left. \left[ \frac{\root q \of { \left( 1 + \left( \vartheta ^{L} \right) ^q \right) ^{\sum _{i=1}^{n}\omega _i} - \left( 1 - \left( \vartheta ^{L} \right) ^q \right) ^{\sum _{i=1}^{n}\omega _i} }}{\root q \of { \left( 1 + \left( \vartheta ^{L} \right) ^q \right) ^{\sum _{i=1}^{n}\omega _i} + \left( 1 - \left( \vartheta ^{L} \right) ^q \right) ^{\sum _{i=1}^{n}\omega _i} }},\right. \right. \\{} & {} \left. \left. \frac{\root q \of { \left( 1 + \left( \vartheta ^{U} \right) ^q \right) ^{\sum _{i=1}^{n}\omega _i} - \left( 1 - \left( \vartheta ^{U} \right) ^q \right) ^{\sum _{i=1}^{n}\omega _i} }}{\root q \of { \left( 1 + \left( \vartheta ^{U} \right) ^q \right) ^{\sum _{i=1}^{n}\omega _i} + \left( 1 - \left( \vartheta ^{U} \right) ^q \right) ^{\sum _{i=1}^{n}\omega _i} }} \right] \right\rangle . \end{aligned}$$

Since \(\sum _{i=1}^{n}\omega _i =1\), thus \({\text {IV}q-\text {ROFEWG}}_{\omega }\left( I_1, I_2, \ldots , I_n \right) = I\).

1.1 A.1 Grey relational analysis

The GRA is a decision-making and data analysis method that assesses the relationship between a target and reference sequences. Its development can be attributed to Julong et al. (1989). GRA proves particularly valuable when confronted with incomplete, uncertain, or insufficient data scenarios. GRA finds widespread application across various disciplines, such as engineering, economics, management, and social sciences, where it evaluates the interdependence among multiple variables or factors. Its utility extends to addressing forecasting, optimization, decision-making, and performance evaluation challenges. At its core, GRA measures the similarity or proximity between two sequences by comparing their respective trends and patterns. Let \(X_{0} = \left( x_{0}(1), x_{0}(2), \ldots , x_{0}(n) \right) \) is an ideal data set and \(X_{k} = \left( x_{k}(1), x_{k}(2), \ldots , x_{k}(n) \right) \) are the alternative data sets of the same length. Then, the evaluating coefficient GRC \(\digamma _{0k}^{j}\) of alternatives from the ideal data sets for the GRA approach is defined as follows:

$$\begin{aligned} \digamma _{0k}^{j} = \frac{ \min \limits _{k} \min \limits _{j} \left| x_{0}(j) - x_{k}(j) \right| + \rho \max \limits _{k} \max \limits _{j} \left| x_{0}(j) - x_{k}(j) \right| }{ \left| x_{0}(j) - x_{k}(j) \right| + \rho \max \limits _{k} \max \limits _{j} \left| x_{0}(j) - x_{k}(j) \right| },\nonumber \\ \end{aligned}$$
(32)

where \(\rho \in (0,1]\) is the dynamic distinguishing coefficient. GRA offers a flexible and intuitive approach to examining variable relationships without precise mathematical models or complete data. By enabling DMs to consider multiple factors simultaneously, this methodology empowers them to make better-informed decisions based on complex systems analysis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahemad, F., Mehlawat, M.K. & Gupta, P. A GRA approach to a MAGDM problem with interval-valued q-rung orthopair fuzzy information. Soft Comput 27, 15793–15815 (2023). https://doi.org/10.1007/s00500-023-08822-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-023-08822-5

Keywords

Navigation