Skip to main content
Log in

Pricing decision problem in dual-channel supply chain based on experts’ belief degrees

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This paper considers a pricing decision problem in supply chain with traditional offline channel and e-commence online channel. In such supply chains, in face of highly changeable and unpredictable markets, for the lack of historical data, channel managers usually have to rely on belief degrees given by experienced experts to make pricing decisions. However, surveys have shown that these human estimations are generally take much wider ranges than they really take. Thus, uncertain measure is developed to deal with these human belief degrees and three uncertain programming models are employed to derive how channel members should make their pricing decisions under three power structures. Besides, analytical comparisons and numerical experiments are conducted to examine the effects of the power structures and experts’ estimations on the equilibrium prices and expected profits. It is revealed that the existence of dominant power, regardless of who holds the leadership, will hurt the efficiency of the channel by decreasing the profit of the whole supply chain. However, from the viewpoint of the individual firms, the firm gains the most profit as a leader while it gains the lowest as a follower. We also find that consumers will suffer from higher prices facing uncertain environment. The supply chain members may benefit from higher uncertainty level of their own costs, whereas the other channel members will gain less profits. Some other managerial highlights are also presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernstein F, Federgruen A (2005) Decentralized supply chains with competing retailers under demand uncertainty. Manag Sci 51(1):18–29

    Article  MATH  Google Scholar 

  • Chen L, Peng J, Liu Z, Zhao R (2016) Pricing and effort decisions for a supply chain with uncertain information. Int J Prod Res. doi:10.1080/00207543.2016.1204475

    Google Scholar 

  • Chen YC, Fang SC, Wen UP (2013) Pricing policies for substitutable products in a supply chain with internet and traditional channels. Eur J Oper Res 224(3):542–551

    Article  MathSciNet  MATH  Google Scholar 

  • Chiang WK, Chhajed D, Hess JD (2003) Direct marketing, indirect profits: a strategic analysis of dual-channel supply-chain design. Manag Sci 49(1):1–20

    Article  MATH  Google Scholar 

  • Choi SC (1991) Price competition in a channel structure with a common retailer. Mark Sci 10(4):271–296

    Article  Google Scholar 

  • Ding Q, Dong C, Pan Z (2016) A hierarchical pricing decision process on a dual-channel problem with one manufacturer and one retailer. Int J Prod Econ 175:197–212

    Article  Google Scholar 

  • Dumrongsiri A, Fan M, Jain A, Moinzadeh K (2008) A supply chain model with direct and retail channels. Eur J Oper Res 187(3):691–718

    Article  MathSciNet  MATH  Google Scholar 

  • EMarketer (2015) Worldwide retail ecommerce sales: emarketer’s updated estimates and forecast through 2019. http://www.emarketer.com/Report/Worldwide-Retail-Ecommerce-Sales-eMarketers-Updated-Estimates-Forecast-Through-20192001716

  • Gao Y, Qin Z (2016a) A chance constrained programming approach for uncertain p-hub center location problem. Comput Ind Eng 102:10–20

    Article  Google Scholar 

  • Gao Y, Qin Z (2016b) On computing the edge-connectivity of an uncertain graph. IEEE Trans Fuzzy Syst 24(4):981–991

    Article  Google Scholar 

  • Gao Y, Yang L, Li S, Kar S (2015) On distribution function of the diameter in uncertain graph. Inf Sci 296:61–74

    Article  MathSciNet  MATH  Google Scholar 

  • Gao Y, Yang L, Li S (2016) Uncertain models on railway transportation planning problem. Appl Math Model 40(7):4921–4934

    Article  MathSciNet  Google Scholar 

  • Hua Z, Li S, Liang L (2006) Impact of demand uncertainty on supply chain cooperation of single-period products. Int J Prod Econ 100(2):268–284

    Article  Google Scholar 

  • Huang H, Ke H (2017) Pricing decision problem for substitutable products based on uncertainty theory. J Intell Manuf 28(3):503–514

  • Huang H, Ke H, Che Y (2016) Equilibrium analysis of channel structure strategies in uncertain environment. J Uncertain Anal Appl 4(1):Article 8

  • Ke H (2014) A genetic algorithm-based optimizing approach for project time–cost trade-off with uncertain measure. J Uncertain Anal Appl 2(1):Article 8

  • Ke H, Su T, Ni Y (2015) Uncertain random multilevel programming with application to production control problem. Soft Comput 19(6):1739–1746

    Article  MATH  Google Scholar 

  • Ke H, Huang H, Ralescu DA, Wang L (2016) Fuzzy bilevel programming with multiple non-cooperative followers: model, algorithm and application. Int J Gen Syst 45(3):336–351

    Article  MathSciNet  MATH  Google Scholar 

  • Lee E, Staelin R (1997) Vertical strategic interaction: implications for channel pricing strategy. Mark Sci 16(3):185–207

    Article  Google Scholar 

  • Li B, Chen P, Li Q, Wang W (2014) Dual-channel supply chain pricing decisions with a risk-averse retailer. Int J Prod Res 52(23):7132–7147

    Article  Google Scholar 

  • Liu B (2007) Uncertainty theory. Springer, Berlin

    Book  MATH  Google Scholar 

  • Liu B (2009) Some research problems in uncertainty theory. J Uncertain Syst 3(1):3–10

    Google Scholar 

  • Liu B (2010) Uncertainty theory. Springer, Berlin

    Book  Google Scholar 

  • Liu S, Xu Z (2014) Stackelberg game models between two competitive retailers in fuzzy decision environment. Fuzzy Optim Decis Making 13(1):33–48

    Article  MathSciNet  Google Scholar 

  • Liu Y, Ha M (2010) Expected value of function of uncertain variables. J Uncertain Syst 4(3):181–186

    Google Scholar 

  • Ma S, Lin J, Zhao X (2016a) Online store discount strategy in the presence of consumer loss aversion. Int J Prod Econ 171:1–7

    Article  Google Scholar 

  • Ma W, Che Y, Huang H, Ke H (2016b) Resource-constrained project scheduling problem with uncertain durations and renewable resources. Int J Mach Learn Cybernet 7(4):613–621

    Article  Google Scholar 

  • McGuire TW, Staelin R (1983) An industry equilibrium analysis of downstream vertical integration. Mark Sci 2(2):161–191

    Article  Google Scholar 

  • Shi R, Zhang J, Ru J (2013) Impacts of power structure on supply chains with uncertain demand. Prod Oper Manag 22(5):1232–1249

    Google Scholar 

  • Soleimani F (2016) Optimal pricing decisions in a fuzzy dual-channel supply chain. Soft Comput 20(2):689–696

    Article  MATH  Google Scholar 

  • Wang L, Huang H, Ke H (2015) Chance-constrained model for RCPSP with uncertain durations. J Uncertain Anal Appl 3(1):Article 12

  • Wang W, Li G, Cheng T (2016) Channel selection in a supply chain with a multi-channel retailer: the role of channel operating costs. Int J Prod Econ 173:54–65

    Article  Google Scholar 

  • Webb KL (2002) Managing channels of distribution in the age of electronic commerce. Ind Mark Manag 31(2):95–102

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  MATH  Google Scholar 

  • Zhao J, Tang W, Zhao R, Wei J (2012) Pricing decisions for substitutable products with a common retailer in fuzzy environments. Eur J Oper Res 216(2):409–419

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao J, Wei J, Li Y (2014) Pricing decisions for substitutable products in a two-echelon supply chain with firms different channel powers. Int J Prod Econ 153:243–252

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (No. 71371141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianyi Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Y. Ni.

Appendices

Appendix 1

In this section, we will recall some important concepts and theorems of uncertainty theory for modeling the pricing decision problem with uncertain factors.

Let \(\Gamma \) be a nonempty set, \(\mathcal{L}\) a \(\sigma \)-algebra over \(\Gamma \), and each element \(\Lambda \) in \(\mathcal{L}\) is called an event. Uncertain measure \(\mathcal{M}\) is defined as a function from \(\mathcal{L}\) to [0, 1].

Definition 1

(Liu 2007) The set function \(\mathcal{M}\) is called an uncertain measure if it satisfies:

Axiom 1

(Normality axiom) \(\mathcal{M}(\Gamma )=1\) for the universal set \(\Gamma \).

Axiom 2

(Duality axiom) \(\mathcal{M}(\Lambda )+\mathcal{M}(\Lambda ^{c})=1\) for any event \(\Lambda \).

Axiom 3

(Subadditivity axiom) For every countable sequence of events \(\Lambda _1, \Lambda _2,\) ..., we have:

$$\begin{aligned} \mathcal{M}\left\{ \bigcup _{i=1}^{\infty }\Lambda _{i}\right\} \le \sum _{i=1}^{\infty }\mathcal{M}\{\Lambda _{i}\}. \end{aligned}$$

Besides, the product uncertain measure on the product \(\sigma \)-algebra \(\mathcal{L}\) was defined by Liu (2009) as follows:

Axiom 4

(Product axiom) Let \((\Gamma _k,\mathcal{L}_k,\mathcal{M}_k)\) be uncertainty spaces for \(k=1,2,\ldots \) The product uncertain measure \(\mathcal{M}\) is an uncertain measure satisfying

$$\begin{aligned} \mathcal{M}\left\{ \prod \limits _{k=1}^\infty \Lambda _k\right\} =\bigwedge _{k=1}^\infty \mathcal{M}_k\{\Lambda _k\} \end{aligned}$$

where \(\Lambda _k\) are arbitrarily chosen events from \(\mathcal{L}_k\) for \(k=1,2,\ldots \), respectively.

Definition 2

(Liu 2007) An uncertain variable is a measurable function \(\xi \) from an uncertainty space \((\Gamma ,\mathcal{L},\mathcal{M})\) to the set of real numbers, i.e., for any Borel set B of real numbers, the set

$$\begin{aligned} \{\xi \in B\}=\{\gamma \in \Gamma \ \big |\ \xi (\gamma )\in B\} \end{aligned}$$

is an event.

Definition 3

(Liu 2009) The uncertain variables \(\xi _1,\xi _2,\ldots ,\xi _n\) are said to be independent if

$$\begin{aligned} \mathcal{M}\left\{ \bigcap _{i=1}^n(\xi _i\in B_i)\right\} =\bigwedge _{i=1}^n \mathcal{M}\{\xi _i\in B_i\} \end{aligned}$$

for any Borel sets \(B_1, B_2,\ldots , B_n\).

Definition 4

(Liu 2007) The uncertainty distribution \(\varPhi \) of an uncertain variable \(\xi \) is defined by

$$\begin{aligned} \varPhi (x)=\mathcal{M}\{\xi \le x\} \end{aligned}$$

for any real number x.

An uncertainty distribution \(\varPhi \) is said to be regular if its inverse function \(\varPhi ^{-1}(\alpha )\) exists and is unique for each \(\alpha \in [0,1]\).

Definition 5

(Liu 2007) Let \(\xi \) be an uncertain variable. The expected value of \(\xi \) is defined by

$$\begin{aligned} E[\xi ]=\int _0^{+\infty }\mathcal{M}\{\xi \ge r\}\mathrm{d}r-\int _{-\infty }^0\mathcal{M}\{\xi \le r\}\mathrm{d}r \end{aligned}$$

provided that at least one of the above two integrals is finite.

Lemma 1

(Liu 2010) Let \(\xi \) be an uncertain variable with uncertainty distribution \(\varPhi \). If the expected value exists, then

$$\begin{aligned} E[\xi ]=\int _0^{+\infty } (1-\varPhi (x))\mathrm{d}x-\int _{-\infty }^0 \varPhi (x)\mathrm{d}x. \end{aligned}$$

Lemma 2

(Liu 2010) Let \(\xi \) be an uncertain variable with regular uncertainty distribution \(\varPhi \). If the expected value exists, then

$$\begin{aligned} E[\xi ]=\int _0^1 \varPhi ^{-1}(\alpha )\mathrm{d}\alpha . \end{aligned}$$

Lemma 3

(Liu and Ha 2010) Let \(\xi _{i}\) be independent uncertain variables with regular uncertainty distributions \(\varPhi _{i}\), \(i = 1, 2, \ldots , n\), respectively, and \(f(x_{1},x_{2}\), ..., \(x_{n})\) be strictly increasing with respect to \(x_{1},x_{2},\ldots ,x_\mathrm{m}\) and strictly decreasing with respect to \(x_{m+1},x_{m+2},\ldots ,x_{n}\). Then, the expected value of \(\xi =f(\xi _{1},\xi _{2}\), ..., \(\xi _{n})\) can be defined by

$$\begin{aligned}&\text {E}[\xi ]=\int _{0}^{1}(\varPhi _{1}^{-1}(\alpha ),\ldots ,\varPhi _\mathrm{m}^{-1}(\alpha ),\varPhi _{m+1}^{-1}(1-\alpha ),\nonumber \\&\quad \ldots ,\varPhi _{n}^{-1}(1-\alpha ))\mathrm{d}\alpha \end{aligned}$$
(37)

provided that the expected value \(E[\xi ]\) exists.

Appendix 2

1.1 Proof of Corollary 1

Referring to Table 2, we have:

$$\begin{aligned} p_\mathrm{e}^\mathrm{MD}=p_\mathrm{e}^\mathrm{RD}= & {} p_\mathrm{e}^\mathrm{ND},\quad p_\mathrm{r}^\mathrm{MD}=p_\mathrm{r}^\mathrm{RD}, \\ p_\mathrm{r}^\mathrm{MD}-p_\mathrm{r}^\mathrm{ND}= & {} \frac{D_\mathrm{r}}{12}. \end{aligned}$$

With the positive assumption, it can be easily obtained that \(D_\mathrm{r}>0\); thus, \(p_\mathrm{r}^\mathrm{MD}>p_\mathrm{r}^\mathrm{ND}\). Similarly, we can attain \(m_\mathrm{r}^\mathrm{RD}>m_\mathrm{r}^\mathrm{ND}>m_\mathrm{r}^\mathrm{MD}\) and \(w_\mathrm{r}^\mathrm{MD}>w_\mathrm{r}^\mathrm{ND}>w_\mathrm{r}^\mathrm{RD}\).

1.2 Proof of Corollary 2

The expected demands in the manufacturer-dominant case are as follows:

$$\begin{aligned} E[q_\mathrm{r}^\mathrm{MD}]= & {} E[\tilde{d}_\mathrm{r}]-E[\tilde{\beta }]p_\mathrm{r}^\mathrm{MD}+E[\tilde{\gamma }]p_\mathrm{e}^\mathrm{MD} =E[\tilde{d}_\mathrm{r}]-E[\tilde{\beta }]\frac{4E[\tilde{d}_\mathrm{r}]-D_\mathrm{r}}{4E[\tilde{\beta }]}+E[\tilde{\beta }]\frac{E[\tilde{\gamma }]}{E[\tilde{\beta }]}p_\mathrm{e}^\mathrm{MD} -E[\tilde{\gamma }]p_\mathrm{e}^\mathrm{MD}\nonumber \\= & {} \frac{E[\tilde{d}_\mathrm{r}]-(E[\tilde{\beta }^{1-\alpha }\tilde{s}_\mathrm{r}^{1-\alpha }]+E[\tilde{\beta }^{1-\alpha }\tilde{c}^{1-\alpha }])+(E[\tilde{\gamma }^{\alpha }\tilde{c}^{1-\alpha }]+E[\tilde{\gamma }^{\alpha }\tilde{s}_\mathrm{e}^{1-\alpha }])}{4};=\frac{D_\mathrm{r}}{4},\nonumber \\ E[q_\mathrm{e}^\mathrm{MD}]= & {} E[\tilde{d}_\mathrm{e}]-E[\tilde{\beta }]p_\mathrm{e}^\mathrm{MD}+E[\tilde{\gamma }]p_\mathrm{r}^\mathrm{MD} =E[\tilde{d}_\mathrm{e}]-\frac{E[\tilde{\beta }]^2-E[\tilde{\gamma }]^2}{E[\tilde{\beta }]}p_\mathrm{e}^\mathrm{MD}-E[\tilde{\gamma }]\frac{4E[\tilde{d}_\mathrm{r}]-D_\mathrm{r}}{4E[\tilde{\beta }]}\nonumber \\= & {} \frac{2E[\tilde{\beta }]D_\mathrm{e}+E[\tilde{\gamma }]D_\mathrm{r}+2(E[\tilde{\gamma }]E[\tilde{s}_\mathrm{r}^{1-\alpha }\tilde{\beta }^{1-\alpha }]-E[\tilde{\beta }]E[\tilde{s}_\mathrm{r}^{1-\alpha }\tilde{\gamma }^{\alpha }]}{4E[\tilde{\beta }]}. \end{aligned}$$
(38)

Since the sales prices of the two channels in the RD case and MD case are the same, the expected demands in the RD model can be attained similarly.

$$\begin{aligned}&E[q_\mathrm{r}^\mathrm{RD}]=\frac{D_\mathrm{r}}{4},E[q_\mathrm{e}^\mathrm{RD}]\nonumber \\&\quad =\frac{2E[\tilde{\beta }]D_\mathrm{e}+E[\tilde{\gamma }]D_\mathrm{r}+2(E[\tilde{\gamma }]E[\tilde{s}_\mathrm{r}^{1-\alpha }\tilde{\beta }^{1-\alpha }]-E[\tilde{\beta }]E[\tilde{s}_\mathrm{r}^{1-\alpha }\tilde{\gamma }^{\alpha }]}{4E[\tilde{\beta }]}.\nonumber \\ \end{aligned}$$
(39)

Similarly, we can get the expected ordering quantities in the ND model.

$$\begin{aligned} E[q_\mathrm{r}^\mathrm{ND}]= & {} E[\tilde{d}_\mathrm{r}]-E[\tilde{\beta }]p_\mathrm{r}^\mathrm{ND}+E[\tilde{\gamma }]p_\mathrm{e}^\mathrm{ND} =E[\tilde{d}_\mathrm{r}]-E[\tilde{\beta }]\frac{3E[\tilde{d}_\mathrm{r}]-D_\mathrm{r}+3E[\tilde{\gamma }]p_\mathrm{e}^{*}}{3E[\tilde{\beta }]}+E[\tilde{\beta }]\frac{E[\tilde{\gamma }]}{E[\tilde{\beta }]}p_\mathrm{e}^\mathrm{ND}-E[\tilde{\gamma }]p_\mathrm{e}^\mathrm{ND}\nonumber \\= & {} \frac{E[\tilde{d}_\mathrm{r}]-(E[\tilde{\beta }^{1-\alpha }\tilde{s}_\mathrm{r}^{1-\alpha }]+E[\tilde{\beta }^{1-\alpha }\tilde{c}^{1-\alpha }])+(E[\tilde{\gamma }^{\alpha }\tilde{c}^{1-\alpha }]+E[\tilde{\gamma }^{\alpha }\tilde{s}_\mathrm{e}^{1-\alpha }])}{3}=\frac{D_\mathrm{r}}{3},\nonumber \\ E[q_\mathrm{e}^\mathrm{ND}]= & {} E[\tilde{d}_\mathrm{e}]-E[\tilde{\beta }]p_\mathrm{e}^\mathrm{ND}+E[\tilde{\gamma }]p_\mathrm{r}^\mathrm{ND} =E[\tilde{d}_\mathrm{e}]-\frac{E[\tilde{\beta }]^2-E[\tilde{\gamma }]^2}{E[\tilde{\beta }]}p_\mathrm{e}^\mathrm{ND}-E[\tilde{\gamma }]\frac{3E[\tilde{d}_\mathrm{r}]-D_\mathrm{r}}{3E[\tilde{\beta }]}\nonumber \\= & {} \frac{3E[\tilde{\beta }]D_\mathrm{e}+ E[\tilde{\gamma }]D_\mathrm{r}+3(E[\tilde{\gamma }]E[\tilde{s}_\mathrm{r}^{1-\alpha }\tilde{\beta }^{1-\alpha }] -E[\tilde{\beta }]E[\tilde{s}_\mathrm{r}^{1-\alpha }\tilde{\gamma }^{\alpha }])}{6E[\tilde{\beta }]}. \end{aligned}$$
(40)

Then, it can be easily attained that

$$\begin{aligned} E[q_\mathrm{r}^\mathrm{MD}]-E[q_\mathrm{r}^\mathrm{ND}]= & {} E[q_\mathrm{r}^\mathrm{RD}]-E[q_\mathrm{r}^\mathrm{ND}]=-\frac{D_\mathrm{r}}{12}<0,\\ E[q_\mathrm{e}^\mathrm{MD}]-E[q_\mathrm{e}^\mathrm{ND}]= & {} E[q_\mathrm{e}^\mathrm{RD}]-E[q_\mathrm{e}^\mathrm{ND}]=\frac{D_\mathrm{r}}{12E[\tilde{\beta }]}>0. \end{aligned}$$

That is

$$\begin{aligned} E[q_\mathrm{e}^\mathrm{MD}]= & {} E[q_\mathrm{e}^\mathrm{RD}]>E[q_\mathrm{e}^\mathrm{ND}],\\ E[q_\mathrm{r}^\mathrm{MD}]= & {} E[q_\mathrm{r}^\mathrm{RD}]<E[q_\mathrm{r}^\mathrm{ND}]. \end{aligned}$$

1.3 Proof of Corollary 3

Since the sales prices and ordering quantities of the two channels in the MD model and RD model are the same, we can easily obtain \(E[\pi _{t}^\mathrm{MD}]=E[\pi _{t}^\mathrm{RD}]\). From the results gained from the three models, we have

$$\begin{aligned}&E[\pi _{t}^\mathrm{ND}]-E[\pi _{t}^\mathrm{RD}]=E[(p_\mathrm{e}^\mathrm{ND}-\tilde{c}-\tilde{s}_\mathrm{e})(\tilde{d}_\mathrm{e}-\tilde{\beta } p_\mathrm{e}^\mathrm{ND} +\tilde{\gamma } p_\mathrm{r}^\mathrm{ND}) \quad +(p_\mathrm{r}^\mathrm{ND}-\tilde{c}-\tilde{s}_\mathrm{r})(\tilde{d}_\mathrm{r}-\tilde{\beta } p_\mathrm{r}^\mathrm{ND}+\tilde{\gamma } p_\mathrm{e}^\mathrm{ND})]\nonumber \\&\quad -E[(p_\mathrm{e}^\mathrm{RD}-\tilde{c}-\tilde{s}_\mathrm{e})(\tilde{d}_\mathrm{e}-\tilde{\beta } p_\mathrm{e}^\mathrm{RD} +\tilde{\gamma } p_\mathrm{r}^\mathrm{RD}) +(p_\mathrm{r}^\mathrm{RD}-\tilde{c}-\tilde{s}_\mathrm{r})(\tilde{d}_\mathrm{r}-\tilde{\beta } p_\mathrm{r}^\mathrm{RD}+\tilde{\gamma } p_\mathrm{e}^\mathrm{RD})]\nonumber \\&=p_\mathrm{e}^\mathrm{ND}E[q_\mathrm{e}^\mathrm{ND}]-p_\mathrm{e}^\mathrm{RD}E[q_\mathrm{e}^\mathrm{RD}]+p_\mathrm{r}^\mathrm{ND}E[q_\mathrm{r}^\mathrm{ND}]-p_\mathrm{r}^\mathrm{RD}E[q_\mathrm{r}^\mathrm{RD}]+(E[\tilde{\beta }^{1-\alpha }\tilde{c}^{1-\alpha }]+E[\tilde{\beta }^{1-\alpha }\tilde{s}_\mathrm{r}^{1-\alpha }]-E[\tilde{\gamma }^{\alpha }\tilde{c}^{1-\alpha }]\nonumber \\&\quad +E[\tilde{\gamma }^{\alpha }\tilde{s}_\mathrm{e}^{1-\alpha }])(p_\mathrm{r}^\mathrm{ND}-p_\mathrm{r}^\mathrm{RD})=\frac{(3E[\tilde{d}_\mathrm{r}]-D_\mathrm{r})D_\mathrm{r}}{9E[\tilde{\beta }]}-\frac{(4E[\tilde{d}_\mathrm{r}]-D_\mathrm{r})D_\mathrm{r}}{16E[\tilde{\beta }]}\nonumber \\&\quad -\frac{(E[\tilde{\beta }^{1-\alpha }\tilde{c}^{1-\alpha }]+E[\tilde{\beta }^{1-\alpha }\tilde{s}_\mathrm{r}^{1-\alpha }] -E[\tilde{\gamma }^{\alpha }\tilde{c}^{1-\alpha }]+E[\tilde{\gamma }^{\alpha }\tilde{s}_\mathrm{e}^{1-\alpha }])D_\mathrm{r}}{12E[\tilde{\beta }]}\nonumber \\&=\frac{(12E[\tilde{d}_\mathrm{r}]-7D_\mathrm{r})D_\mathrm{r}-12(E[\tilde{\beta }^{1-\alpha }\tilde{c}^{1-\alpha }]+E[\tilde{\beta }^{1-\alpha }\tilde{s}_\mathrm{r}^{1-\alpha }]-E[\tilde{\gamma }^{\alpha }\tilde{c}^{1-\alpha }]+E[\tilde{\gamma }^{\alpha }\tilde{s}_\mathrm{e}^{1-\alpha }])D_\mathrm{r}}{144E[\tilde{\beta }]}\nonumber \\&=\frac{5D_\mathrm{r}^{2}}{144E[\tilde{\beta }]}>0. \end{aligned}$$
(41)

Thus, we can conclude that \(E[\pi _{t}^\mathrm{ND}]>E[\pi _{t}^\mathrm{RD}]=E[\pi _{t}^\mathrm{MD}]\).

Similarly, we can attain

$$\begin{aligned} E[\pi _\mathrm{r}^\mathrm{ND}]-E[\pi _\mathrm{r}^\mathrm{MD}]= & {} \frac{7D_\mathrm{r}^{2}}{144E[\tilde{\beta }]}>0, \\ E[\pi _\mathrm{r}^\mathrm{ND}]-E[\pi _\mathrm{r}^\mathrm{RD}]= & {} \frac{D_\mathrm{r}^{2}}{72E[\tilde{\beta }]}>0,\\ E[\pi _\mathrm{m}^\mathrm{ND}]-E[\pi _\mathrm{m}^\mathrm{MD}]= & {} \frac{D_\mathrm{r}^{2}}{72E[\tilde{\beta }]}>0,\\ E[\pi _\mathrm{m}^\mathrm{ND}]-E[\pi _\mathrm{m}^\mathrm{RD}]= & {} \frac{3D_\mathrm{r}^{2}}{144E[\tilde{\beta }]}>0. \end{aligned}$$

That is,

$$\begin{aligned}&E[\pi _\mathrm{m}^\mathrm{MD}]>E[\pi _\mathrm{m}^\mathrm{ND}]>E[\pi _\mathrm{m}^\mathrm{RD}],\quad E[\pi _\mathrm{r}^\mathrm{RD}]>E[\pi _\mathrm{r}^\mathrm{ND}]\\&>E[\pi _\mathrm{r}^\mathrm{MD}],\quad E[\pi _{t}^\mathrm{MD}]=E[\pi _{t}^\mathrm{RD}]>E[\pi _{t}^\mathrm{ND}]. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, H., Huang, H. & Gao, X. Pricing decision problem in dual-channel supply chain based on experts’ belief degrees. Soft Comput 22, 5683–5698 (2018). https://doi.org/10.1007/s00500-017-2600-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-017-2600-0

Keywords

Navigation