Skip to main content
Log in

Differential evolution dynamics analysis by complex networks

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Differential evolution is a simple yet efficient heuristic originally designed for global optimization over continuous spaces that has been used in many research areas. The question how to improve its performance is still popular and during the years, many successful methods dealing with optimal setting or hybridization of the control parameters were proposed. In this paper, we propose a novel approach based on modeling of the differential evolution dynamics by complex networks. In each generation, the individuals are mapped to the nodes and the relationships between them are modeled by the edges of the graph. Thanks to this simple visualization, the interconnection between the differential evolution convergence speed and the weighted clustering coefficients has been revealed. As a consequence, we have focused on the parents selection in the mutation step where the individuals are not selected randomly as usual but on the basis of their weighted clustering coefficients. Our enhancement has been incorporated in the classical differential evolution, self-adaptive differential evolution (jDE) and differential evolution with composite trial vector generation strategies and control parameters. Finally, a set of well-known benchmark functions (including 21 functions) has been used to test and evaluate the performance of the proposed enhancement of the differential evolution. The experimental results and statistical analysis indicate that the enhanced algorithms perform better or at least comparable to their original versions and the analysis of the differential evolution dynamics with the aim of the complex network might be an effective tool to improve the differential evolution convergence in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ashlock D, Smucker M, Walker J (1999) Graph based genetic algorithms. In: Evolutionary computation. IEEE, pp 1362–1368

  • Barrat A, Barthelemy M, Pastor-Satorras R, Vespignani A (2004) The architecture of complex weighted networks. Proc Natl Acad Sci USA 101:3747–3752

    Article  Google Scholar 

  • Boccaletti S, Latorab V, Morenod Y, Chavezf M, Hwanga DU (2006) Complex networks: structure and dynamics. Phys Rep 424:175–308

    Article  MathSciNet  Google Scholar 

  • Brest J, Maučec MS (2008) Population size reduction for the differential evolution algorithm. Appl Intell 29(3):228–247

    Article  Google Scholar 

  • Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006) Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evolut Comput 10:646–657

    Article  Google Scholar 

  • Chakraborty UK, Das S, Konar A, (2006) Differential evolution with local neighborhood. In: IEEE congress on evolutionary computation, CEC 2006. IEEE, pp 2042–2049

  • Das S, Suganthan PN (2011) Differential evolution: a survey of the state-of-the-art. Evolut Comput IEEE Trans 15(1):4–31

    Article  Google Scholar 

  • Das S, Abraham A, Chakraborty U, Konar A (2009) Differential evolution using a neighborhood-based mutation operator. IEEE Trans Evolut Comput 13:526–553

    Article  Google Scholar 

  • Davendra D, Zelinka I, Metlicka M, Senkerik R, Pluhacek M (2014a) Complex network analysis of differential evolution algorithm applied to flowshop with no-wait problem. In: 2014 IEEE symposium on differential evolution (SDE). IEEE, pp 1–8

  • Davendra D, Zelinka I, Senkerik R, Pluhacek M (2014b) Complex network analysis of discrete self-organising migrating algorithm. In: Nostradamus 2014: prediction, modeling and analysis of complex systems, pp 161–174

  • dos Santos Coelho L, Ayala HVH, Mariani VC (2014) A self-adaptive chaotic differential evolution algorithm using gamma distribution for unconstrained global optimization. Appl Math Comput 234:452–459

    MathSciNet  MATH  Google Scholar 

  • Fan HY, Lampinen J (2003) A trigonometric mutation operation to differential evolution. J Glob Optim 27(1):105–129

    Article  MathSciNet  MATH  Google Scholar 

  • Gämperle R, Müller SD, Koumoutsakos P (2002) A parameter study for differential evolution. Adv Intell Syst Fuzzy Syst Evolut Comput 10:293–298

    Google Scholar 

  • Gong M, Cai Q, Chen X, Ma L (2014) Complex network clustering by multiobjective discrete particle swarm optimization based on decomposition. IEEE Trans Evolut Comput 18:82–97

    Article  Google Scholar 

  • Holme P, Park SM, Kim BJ, Edling CR (2007) Korean university life in a network perspective: dynamics of a large affiliation network. Phys A: Stat Mech Appl 373:821–830. doi:10.1016/j.physa.2006.04.066

    Article  Google Scholar 

  • Iorio AW, Li X (2005) Solving rotated multi-objective optimization problems using differential evolution. In: AI 2004: advances in artificial intelligence. Springer, pp 861–872

  • Islam S, Das S, Ghosh S, Roy S, Suganthan P (2011) An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Trans Evolut Comput 42:482–500

    Google Scholar 

  • Kalna G, Higham DJ (2006) Clustering coefficients for weighted networks. In: Adaptation in artificial and biological systems. Society for the Study of Artificial Intelligence and the Simulation of Behaviour, pp 45–51

  • Kim J, Wilhelm T (2008) What is a complex graph? Phys A: Stat Mech Appl 387:2637–2652

    Article  MathSciNet  Google Scholar 

  • KovaFevi D, Mladenovi N, Bratislav Petrovi PM (2014) DE-VNS: self-adaptive differential evolution with crossover neighborhood search for continuous global optimization. Comput Oper Res 52:157–169

    Article  MathSciNet  Google Scholar 

  • Li Y, Liu J, Liu C (2014) A comparative analysis of evolutionary and memetic algorithms for community detection from signed social networks. Soft Comput 18:329–348

    Article  Google Scholar 

  • Mabu S, Hirasawa K, Hu J (2007) A graph-based evolutionary algorithm: genetic network programming (GNP) and its extension using reinforcement learning. Evolut Comput 15:369–398

    Article  Google Scholar 

  • Mallipeddi R, Suganthan PN (2010) Differential evolution algorithm with ensemble of parameters and mutation and crossover strategies. In: Swarm, evolutionary, and memetic computing. Springer, pp 71–78

  • Mallipeddi R, Suganthan PN, Pan QK, Tasgetiren MF (2011) Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl Soft Comput 11(2):1679–1696

    Article  Google Scholar 

  • Mezura-Montes E, Velasquez-Rezes J (2006) A comparative study of differential evolution variants for global optimization. In: Proceedings of the 8th annual conference on genetic and evolutionary computation. ACM, pp 485–492

  • Mlakar M, Petelin D, Tušar T, Filipič B (2015) GP-DEMO: differential evolution for multiobjective optimization based on Gaussian process models. Eur J Oper Res 243(2):347–361

    Article  MathSciNet  MATH  Google Scholar 

  • Neri F, Tirronen V (2010) Recent advances in differential evolution: a survey and experimental analysis. Artif Intell Rev 33(1–2):61–106

    Article  Google Scholar 

  • Noman N, Iba H (2008) Accelerating differential evolution using an adaptive local search. Evolut Comput IEEE Trans 12(1):107–125

    Article  Google Scholar 

  • Onnela JP, Saramaki J, Kertesz J, Kaski K (2005) Intensity and coherence of motifs in weighted complex networks. Phys Rev E 71:065103. doi:10.1103/PhysRevE.71.065103

    Article  Google Scholar 

  • Price K, Storn RM, Lampinen JA (2006) Differential evolution: a practical approach to global optimization. Springer, Berlin, Heidelberg

    MATH  Google Scholar 

  • Qin AK, Suganthan PN (2005) Self-adaptive differential evolution algorithm for numerical optimizations. In: Proceedings of the 2005 IEEE congress on evolutionary computation, vol 2, pp 1785–1791

  • Rahnamayan S, Tizhoosh HR, Salama M (2006) Opposition-based differential evolution algorithms. In: IEEE congress on evolutionary computation, CEC 2006. IEEE, pp 2010–2017

  • Ronkkonen J, Kukkonen S, Price KV (2005) Real-parameter optimization with differential evolution. Proceedings of IEEE CEC 1:506–513

    Google Scholar 

  • Saramaki J, Kivela M, Onnela JP, Kaski K, Kertes J (2007) Generalizations of the clustering coefficient to weighted complex networks. Phys Rev E 75:027105. doi:10.1103/PhysRevE.75.027105

    Article  Google Scholar 

  • Soleimani-pouri M, Rezvanian A, Meybodi MR (2014) An ant based particle swarm optimization algorithm for maximum clique problem in social networks. Springer International Publishing, pp 295–304. doi:10.1007/978-3-319-05912-9_14

  • Storn R, Price K (1995) Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces. In: ICSI, IEEE

  • Tirronen V, Neri F, Rossi T (2009) Enhancing differential evolution frameworks by scale factor local search-part i. In: IEEE congress on evolutionary computation, CEC’09. IEEE, pp 94–101

  • Wang Y, Cai Z, Zhang Q (2011) Differential evolution with composite trial vector generation strategies and control parameters. Evolut Comput 15:55–66

    Article  Google Scholar 

  • Wu Q, Hao J-K (2015) A review on algorithms for maximum clique problems. Eur J Oper Res 242(3):693–709

    Article  MathSciNet  MATH  Google Scholar 

  • Yang Z, Yao X, He J (2008) Making a difference to differential evolution. Springer, Berlin, Heidelberg, pp 397–414. doi:10.1007/978-3-540-72960-0_19

  • Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evolut Comput 3:82–102

    Article  Google Scholar 

  • Yi W, Gao L, Li X, Zhou Y (2015) A new differential evolution algorithm with a hybrid mutation operator and self-adapting control parameters for global optimization problems. Appl Intell 42(4):642–660

    Article  Google Scholar 

  • Zaharie D (2009) Influence of crossover on the behavior of differential evolution algorithms. Appl Soft Comput 9(3):1126–1138

    Article  Google Scholar 

  • Zelinka I, Davendra DD, Snasel V, Senkerik R, Jasek R (2010) Preliminary investigation on relations between complex networks and evolutionary algorithms dynamics. In: Computer information systems and industrial management applications (CISIM)

  • Zelinka I, Davendra DD, Chadli M, Senkerik R, Dao TT, Skanderova L (2013) Evolutionary dynamics as the structure of complex networks. In: Handbook of optimization. Springer, Berlin, Heidelberg, pp 215–243

  • Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Prod Inf Stat Appl Genet Mol Biol 4. doi:10.2202/1544-6115.1128

  • Zhenyu Y, Tang K, Yao X (2008) Self-adaptive differential evolution with neighborhood search. In: Evolutionary computation, 2008. CEC 2008. IEEE, pp 1110–1116. doi:10.1109/CEC.2008.4630935

  • Zhou Y, Li X, Gao L (2013) A differential evolution algorithm with intersect mutation operator. Appl Soft Comput 13:390–401

    Article  Google Scholar 

Download references

Acknowledgments

The following grant are acknowledged for the financial support provided for this research: Grant Agency of the Czech Republic—GACR P103/15/06700S, partially supported by Grant of SGS No. SP2015/142, VSB—Technical University of Ostrava.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lenka Skanderova.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest to this work.

Additional information

Communicated by V. Loia.

Appendix 1: Benchmark functions

Appendix 1: Benchmark functions

1.1 Sphere Model

$$\begin{aligned}&f_1(x) = \sum _{i=1}^{30}{x_{i}^{2}}, \nonumber \\&-100 \le x_i \le 100, \min (f_1) = f_1(0, \ldots , 0) = 0. \end{aligned}$$
(10)

1.2 Schwefel’s Problem 2.22

$$\begin{aligned}&f_2(x) = \sum _{i=1}^{30}{|x_i|} + \prod _{i=1}^{30}{|x_i|}, \nonumber \\&-10 \le x_i \le 10, \min (f_2) = f_2(0, \ldots ,0) = 0. \end{aligned}$$
(11)

1.3 Schwefel’s Problem 1.2

$$\begin{aligned}&f_3(x) = \sum _{i=1}^{30}{\left( \sum _{j=1}^{i}{x_j}\right) ^2}, \nonumber \\&-100 \le x_i \le 100, \min (f_3) = f_3(0, \ldots ,0) = 0. \end{aligned}$$
(12)

1.4 Schwefel’s Problem 1.21

$$\begin{aligned}&f_4(x) = \max _{i} \{|x_i|, 1\le i \le 30\}, \nonumber \\&-100 \le x_i \le 100, \min (f_4) = f_4(0, \ldots ,0) = 0. \end{aligned}$$
(13)

1.5 Generalized Rosenbrock’s Function

$$\begin{aligned}&f_5(x) = \sum _{i=1}^{29}{[100(x_{i+1}-x_{i}^2)^2 + (x_i-1)^2]}, \nonumber \\&-30 \le x_i \le 30, \min (f_5) = f_5(1, \ldots ,1) = 0. \end{aligned}$$
(14)

1.6 Step Function

$$\begin{aligned}&f_6(x) = \sum _{i=1}^{30}{(\left\lfloor x_i + 0.5\right\rfloor )^2}, \nonumber \\&-100 \le x_i \le 100, \min (f_6) = f_6(0, \ldots ,0) = 0. \end{aligned}$$
(15)

1.7 Quartic Function i.e. Noise

$$\begin{aligned}&f_7(x) = \sum _{i=1}^{30}{ix_i^4} + \text {random}[0,1), \nonumber \\&-1.28 \le x_i \le 1.28, \min (f_7) = f_7(0, \ldots ,0) = 0. \end{aligned}$$
(16)

1.8 Generalized Schwefel’s Problem 2.26

$$\begin{aligned}&f_8(x) = -\sum _{i=1}^{30}{x_i \sin {(\sqrt{|x_i|})}}, \nonumber \\&-500 \le x_i \le 500, \min (f_8)\nonumber \\&\quad = f_8(420.9687, \ldots , 420.9687) = -12569.5. \end{aligned}$$
(17)

1.9 Generalized Rastrigin’s Function

$$\begin{aligned}&f_9(x) = \sum _{i=1}^{30}{[x_i^2 - 10\cos {(2 \pi x_i)} + 10]}, \nonumber \\&-5.12 \le x_i \le 5.12, \min (f_9) = f_9(0, \ldots , 0) = 0. \end{aligned}$$
(18)

1.10 Ackley’s Function

$$\begin{aligned} f_{10}(x)= & {} -20 \exp \left( -0.2 \sqrt{\frac{1}{30}\sum _{i=1}^{30}{x_i^2}} \right) \nonumber \\&- \exp \left( \frac{1}{30} \sum _{i=1}^{30}{\cos (2\pi x_i)}\right) + 20 + e, \nonumber \\&-32 \le x_i \le 32, \min (f_{10})\nonumber \\ {}= & {} f_{10}(0, \ldots , 0) = 0. \end{aligned}$$
(19)

1.11 Generalized Griewangk Function

$$\begin{aligned}&f_{11}(x) = \frac{1}{4000} \sum _{i=1}^{30}{x_{i}^2} - \prod _{i=1}^{30}{\cos \left( \frac{x_i}{\sqrt{i}}\right) + 1}, \nonumber \\&-600 \le x_i \le 600, \min (f_{11}) = f_{11}(0, \ldots , 0) = 0. \end{aligned}$$
(20)

1.12 Generalized Penalized Functions

$$\begin{aligned} f_{12}(x)= & {} \frac{\pi }{30} \left( 10 \sin ^{2}(\pi x_1) + \sum _{i=1}^{29}(y_i-1)^2\right. \nonumber \\&\qquad \qquad \left. \times \, [1 + 10 \sin ^2(\pi y_{i+1})] + (y_n-1)^2 \right) \nonumber \\&+\sum _{i=1}^{30}{u(x_i,10,100,4)}, -50 \le x_i \le 50, \min (f_{12})\nonumber \\= & {} f_{12}(1, \ldots , 1) = 0.\end{aligned}$$
(21)
$$\begin{aligned} f_{13}(x)= & {} 0.1 \left( \sin ^{2}(3 \pi x_1) + \sum _{i=1}^{29}(x_i-1)^2[1 + \sin ^2(3\pi x_{i+1})]\right. \nonumber \\&\qquad \qquad \left. +\, (x_n-1)^2[1+ \sin ^2(2 \pi x_{30})] \right) \nonumber \\&+ \sum _{i=1}^{30}{u(x_i,5,100,4)},-50 \le x_i \le 50, \min (f_{13})\nonumber \\= & {} f_{13}(1, \ldots , 1) = 0. \end{aligned}$$
(22)

where

$$\begin{aligned}u(x_i,a,k,m)= & {} \left\{ \begin{array}{l l} k(x_i - a)^m &{}\quad x_i >a,\\ 0 &{} \quad -a \le x_i \le a,\\ k(-x_i - a)^m &{} \quad x_i < -a. \end{array} \right. \\ y_i= & {} 1 + \frac{1}{4}(x_i+1). \end{aligned}$$

1.13 Shekel’s Foxholes Function

$$\begin{aligned}&f_{14}(x) = \left[ \frac{1}{500} + \sum _{i=1}^{25}{\frac{1}{j + \sum _{i=1}^{2}{(x_i - a_{i,j})^6}}}\right] ^{-1} \nonumber \\&-65.536 \le x_i \le 65.536, \min (f_{14}) = f_{14}(-32, 32) \approx 1.\nonumber \\ \end{aligned}$$
(23)

where

$$\begin{aligned} a_{i,j} = \begin{bmatrix} -32&-16&0&16&32&-32 \ldots 0&16&32\\ -32&-32&-32&-32&-32&-16 \ldots&32&32&32\\ \end{bmatrix} \end{aligned}$$

1.14 Kowalik’s Function

See Table 6.

$$\begin{aligned}&f_{15}(x) = \sum _{i=1}^{11}{\left[ a_i - \frac{x_1(b_i^2 + b_i x_2)}{b_i^2 + b_i x_3 + x_4}\right] ^2}, \nonumber \\&-5 \le x_i \le 5, \min (f_{15}) \approx f_{15}(0.1928, 0.1908,\nonumber \\&\quad 0.1231, 0.1358) \approx 0.0003075. \end{aligned}$$
(24)
Table 6 Kowalik’s function \(f_{15}\)

1.15 Six-Hump Camel-Back Function

$$\begin{aligned}&f_{16}(x) = 4x_1^2 - 2.1 x_1^4 + \frac{1}{3}x_1^6 + x_1 x_2 - 4x_2^2 + 4x_2^4, -5 \le x_i \le 5, \nonumber \\&x_{\text {min}}(0.08983, -0.7126),(-0.08983, 0.7126),\nonumber \\&\min (f_{16}) = -1.0316285 \end{aligned}$$
(25)

1.16 Branin Function

$$\begin{aligned}&f_{17}(x) = \left( x_2 - \frac{5.1}{4\pi ^2} x_1^2 + \frac{5}{\pi } x_1 - 6\right) ^2 + 10 \left( 1- \frac{1}{8 \pi }\right) \cos (x_1)\nonumber \\&\quad + 10,-5 \le x_1 \le 10, \nonumber \\&0 \le x_2 \le 15, x_{\text {min}}(-3.142, 12.275),(3.142, 2.275),\nonumber \\&\quad (9.425, 2.425), \min (f_{17})= 0.398. \end{aligned}$$
(26)

1.17 Goldstein–Price Function

$$\begin{aligned}&\!\!\!\!f_{18}(x) = [1 + (x_1 + x_2 +1)^2 (19-14x_1 + 3x_1^2 - 14x_2 \nonumber \\&\qquad \qquad +\, 6x_1 x_2 + 3x_2^2)] [30 + (2x_1 - 3x_2)^2 \times (18 - 32x_1 \nonumber \\&\qquad \qquad +\, 12 x_1^2 + 48 x_2 - 36x_1x_2 + 27x_2^2)],\nonumber \\&-2 \le x_i \le 2, x_{\text {min}}(0,-1), \min (f_{18}) = 3. \end{aligned}$$
(27)

1.18 Shekel’s Family

$$\begin{aligned} f_{19}(x) = -\sum _{i=1}^{m}{[(x - a_i)(x-a_i)^T + c_i]^{-1}}, \end{aligned}$$
(28)

where \(m = 5\), 7, and 10 for \(f_{19}\), \(f_{20}\), \(f_{21}\). The function \(f_{19}(x)\) has 10, \(f_{20}(x)\) 7 and \(f_{21}(x)\) 10 local minima, \(x_{\text {local}\_\text {opt}}\approx 1/{c_i}\) for \(1 \le i \le m\). The coefficients are defined by Table 7.

Table 7 Shekel functions \(f_{19}\), \(f_{20}\) and \(f_{21}\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skanderova, L., Fabian, T. Differential evolution dynamics analysis by complex networks. Soft Comput 21, 1817–1831 (2017). https://doi.org/10.1007/s00500-015-1883-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-015-1883-2

Keywords

Navigation