Skip to main content
Log in

ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

A family of time-varying hyperbolic systems of balance laws is considered. The partial differential equations of this family can be stabilized by selecting suitable boundary conditions. For the stabilized systems, the classical technique of construction of Lyapunov functions provides a function which is a weak Lyapunov function in some cases, but is not in others. We transform this function through a strictification approach to obtain a time-varying strict Lyapunov function. It allows us to establish asymptotic stability in the general case and a robustness property with respect to additive disturbances of input-to-state stability (ISS) type. Two examples illustrate the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bastin G, Coron J-M, d’Andréa Novel B (2008) Using hyperbolic systems of balance laws for modeling, control and stability analysis of physical networks. In: Lecture notes for the pre-congress workshop on complex embedded and networked control systems, Seoul, Korea, 17th IFAC World Congress

  2. Bastin G, Coron J-M, d’Andréa Novel B (2009) On Lyapunov stability of linearised Saint-Venant equations for a sloping channel. Netw Heterog Media 4(2): 177–187

    Article  MathSciNet  MATH  Google Scholar 

  3. Cazenave T, Haraux A (1998) An introduction to semilinear evolution equations. Oxford University Press, Oxford

    MATH  Google Scholar 

  4. Colombo RM, Guerra G, Herty M, Schleper V (2009) Optimal control in networks of pipes and canals. SIAM J Control Optim 48: 2032–2050

    Article  MathSciNet  MATH  Google Scholar 

  5. Coron J-M (1999) On the null asymptotic stabilization of the two-dimensional incompressible Euler equations in a simply connected domain. SIAM J Control Optim 37(6): 1874–1896

    Article  MathSciNet  MATH  Google Scholar 

  6. Coron J-M, Bastin G, d’Andréa Novel B (2008) Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems. SIAM J Control Optim 47(3): 1460–1498

    Article  MathSciNet  MATH  Google Scholar 

  7. Coron J-M, d’Andréa Novel B, Bastin G (2007) A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws. IEEE Trans Autom Control 52(1): 2–11

    Article  Google Scholar 

  8. Coron J-M, Trélat E (2006) Global steady-state stabilization and controllability of 1D semilinear wave equations. Commun Contemp Math 8(4): 535–567

    Article  MathSciNet  MATH  Google Scholar 

  9. Dashkovskiy S, Mironchenko A (2010) On the uniform input-to-state stability of reaction-diffusion systems. In: 49th IEEE conference on decision and control (CDC), Atlanta, GA, USA, pp 6547–6552

  10. Diagne A, Bastin G, Coron J-M (2011) Lyapunov exponential stability of linear hyperbolic systems of balance laws. Automatica (to appear)

  11. Dick M, Gugat M, Leugering G (2010) Classical solutions and feedback stabilization for the gas flow in a sequence of pipes. Netw Heterog Media 5(4): 691–709

    Article  MathSciNet  Google Scholar 

  12. Dos Santos V, Prieur C (2008) Boundary control of open channels with numerical and experimental validations. IEEE Trans Control Syst Technol 16(6): 1252–1264

    Article  Google Scholar 

  13. Graf WH (1984) Hydraulics of sediment transport. Water Resources Publications, Highlands Ranch, Colorado

    Google Scholar 

  14. Graf WH (1998) Fluvial hydraulics. Wiley, New York

    Google Scholar 

  15. Gugat M, Herty M, Klar A, Leugering G (2005) Optimal control for traffic flow networks. J Optim Theory Appl 126(3): 589–616

    Article  MathSciNet  MATH  Google Scholar 

  16. Gugat M, Leugering G (2009) Global boundary controllability of the Saint-Venant system for sloped canals with friction. Annales de l’Institut Henri Poincare (C) Non Linear Analysis 26(1): 257–270

    Article  MathSciNet  MATH  Google Scholar 

  17. Haut B, Bastin G (2007) A second order model of road junctions in fluid models of traffic networks. Netw Heterog Media 2(2): 227–253

    Article  MathSciNet  MATH  Google Scholar 

  18. Hudson J, Sweby PK (2003) Formulations for numerically approximating hyperbolic systems governing sediment transport. J Scientif Comput 19: 225–252

    Article  MathSciNet  MATH  Google Scholar 

  19. Jayawardhana B, Logemann H, Ryan EP (2011) The circle criterion and input-to-state stability. IEEE Control Syst 31(4): 32–67

    Article  MathSciNet  Google Scholar 

  20. Kmit I (2008) Classical solvability of nonlinear initial-boundary problems for first-order hyperbolic systems. Int J Dyn Syst Differ Equ 1(3): 191–195

    MathSciNet  Google Scholar 

  21. Krstic M, Smyshlyaev A (2008) Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays. Syst Control Lett 57: 750–758

    Article  MathSciNet  MATH  Google Scholar 

  22. Li T-T (1994) Global classical solutions for quasilinear hyperbolic systems. RAM: Research in Applied Mathematics, vol 32. Masson, Paris

  23. Löfberg J (2004) Yalmip: a toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD Conference, Taipei, Taiwan

  24. Luo Z-H, Guo B-Z, Morgul O (1999) Stability and stabilization of infinite dimensional systems and applications. Communications and Control Engineering. Springer, New York

    Book  Google Scholar 

  25. Malaterre P-O, Rogers DC, Schuurmans J (1998) Classification of canal control algorithms. ASCE J Irrigation Drainage Eng 124(1): 3–10

    Article  Google Scholar 

  26. Malisoff M, Mazenc F (2009) Constructions of strict Lyapunov functions. Communications and Control Engineering Series. Springer, London

    Book  Google Scholar 

  27. Mazenc F, Malisoff M, Bernard O (2009) A simplified design for strict Lyapunov functions under Matrosov conditions. IEEE Trans Autom Control 54(1): 177–183

    Article  MathSciNet  Google Scholar 

  28. Mazenc F, Malisoff M, Lin Z (2008) Further results on input-to-state stability for nonlinear systems with delayed feedbacks. Automatica 44(9): 2415–2421

    Article  MathSciNet  MATH  Google Scholar 

  29. Mazenc F, Nesic D (2007) Lyapunov functions for time-varying systems satisfying generalized conditions of Matrosov theorem. Math Control Signals Syst 19: 151–182

    Article  MathSciNet  MATH  Google Scholar 

  30. Mazenc F, Prieur C (2011) Strict Lyapunov functions for semilinear parabolic partial differential equations. Math Control Related Fields 1(2): 231–250

    Article  MathSciNet  MATH  Google Scholar 

  31. Pham VT, Georges D, Besancon G (2010) Predictive control with guaranteed stability for hyperbolic systems of conservation laws. In: 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, pp 6932–6937

  32. Prieur C, de Halleux J (2004) Stabilization of a 1-D tank containing a fluid modeled by the shallow water equations. Syst Control Lett 52(3–4): 167–178

    Article  MATH  Google Scholar 

  33. Prieur C, Winkin J, Bastin G (2008) Robust boundary control of systems of conservation laws. Math Control Signals Syst 20(2): 173–197

    Article  MathSciNet  MATH  Google Scholar 

  34. Shampine LF (2005) Solving hyperbolic PDEs in Matlab. Appl Numer Anal Comput Math 2: 346–358

    Article  MathSciNet  MATH  Google Scholar 

  35. Shampine LF (2005) Two-step Lax–Friedrichs method. Appl Math Lett 18: 1134–1136

    Article  MathSciNet  MATH  Google Scholar 

  36. Slemrod M (1974) A note on complete controllability and stabilizability for linear control systems in Hilbert space. SIAM J Control 12: 500–508

    Article  MathSciNet  Google Scholar 

  37. Sontag ED (2007) Input to state stability: Basic concepts and results. In: Nonlinear and optimal control theory, pp 163–220. Springer, Berlin

  38. Sturm JF (1999) Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim Methods Softw 11–12:625–653. http://sedumi.mcmaster.ca/

  39. Xu C-Z, Sallet G (2002) Exponential stability and transfer functions of processes governed by symmetric hyperbolic systems. ESAIM Control Optim Calculus Var 7: 421–442

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Prieur.

Additional information

Work supported by HYCON2 Network of Excellence “Highly-Complex and Networked Control Systems”, grant agreement 257462.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prieur, C., Mazenc, F. ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws. Math. Control Signals Syst. 24, 111–134 (2012). https://doi.org/10.1007/s00498-012-0074-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-012-0074-2

Keywords

Navigation